cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366173 Triangle of coefficients of Caylerian polynomials.

Original entry on oeis.org

1, 1, 1, 2, 1, 8, 4, 1, 24, 42, 8, 1, 64, 276, 184, 16, 1, 162, 1458, 2298, 732, 32, 1, 400, 6844, 21232, 16000, 2752, 64, 1, 976, 29952, 164680, 240350, 99756, 9992, 128, 1, 2368, 125468, 1142952, 2882300, 2320008, 578420, 35488, 256
Offset: 0

Views

Author

Michel Marcus, Oct 03 2023

Keywords

Examples

			Triangle begins:
  1
  1
  1 2
  1 8 4
  1 24 42 8
  1 64 276 184 16
  ...
Because polynomials are: 1; 1; 1 + 2t; 1 + 8t + 4t^2; 1 + 24t + 42t^2 + 8t^3; 1 + 64t + 276t^2 + 184t^3 + 16t^4; ...
		

Crossrefs

Cf. A000670 (row sums), A365449 (alternating row sums). Column 1 seems to be twice A048776.

Programs

  • Python
    from itertools import product
    def cayley_permutations(n):
        return [p for p in product(range(n), repeat=n) if len(set(p)) == max(p)+1]
    for n in range(1, 9):
        a = [0] * n
        for p in cayley_permutations(n):
            a[sum(x>y for x,y in zip(p, p[1:]))] += 1
        print(a[::-1]) # Andrei Zabolotskii, Jul 26 2025

Extensions

Rows 6-9 from Andrei Zabolotskii, Jul 26 2025