A366173 Triangle of coefficients of Caylerian polynomials.
1, 1, 1, 2, 1, 8, 4, 1, 24, 42, 8, 1, 64, 276, 184, 16, 1, 162, 1458, 2298, 732, 32, 1, 400, 6844, 21232, 16000, 2752, 64, 1, 976, 29952, 164680, 240350, 99756, 9992, 128, 1, 2368, 125468, 1142952, 2882300, 2320008, 578420, 35488, 256
Offset: 0
Examples
Triangle begins: 1 1 1 2 1 8 4 1 24 42 8 1 64 276 184 16 ... Because polynomials are: 1; 1; 1 + 2t; 1 + 8t + 4t^2; 1 + 24t + 42t^2 + 8t^3; 1 + 64t + 276t^2 + 184t^3 + 16t^4; ...
Links
- Giulio Cerbai and Anders Claesson, Caylerian polynomials, arXiv:2310.01270 [math.CO], 2023. See p. 11.
- Giulio Cerbai and Anders Claesson, Enumerative aspects of Caylerian polynomials, arXiv:2411.08426 [math.CO], 2024. See p. 2.
Crossrefs
Programs
-
Python
from itertools import product def cayley_permutations(n): return [p for p in product(range(n), repeat=n) if len(set(p)) == max(p)+1] for n in range(1, 9): a = [0] * n for p in cayley_permutations(n): a[sum(x>y for x,y in zip(p, p[1:]))] += 1 print(a[::-1]) # Andrei Zabolotskii, Jul 26 2025
Extensions
Rows 6-9 from Andrei Zabolotskii, Jul 26 2025