A366187 Positive integers k such that the fourth derivative of the k-th Bernoulli polynomial B(k, x) contains only integer coefficients.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 42, 43, 45, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 68, 70, 71, 72, 73, 78, 79, 80, 81, 91, 92, 93, 110, 111, 121, 122, 123, 143, 147, 156, 157, 171, 176, 177, 178, 190, 191, 192, 210, 211, 255, 392, 393
Offset: 1
Links
- Olivier Bordellès, Florian Luca, Pieter Moree, and Igor E. Shparlinski, Denominators of Bernoulli polynomials, Mathematika 64 (2018), 519-541.
- Bernd C. Kellner, On a product of certain primes, J. Number Theory, 179 (2017), 126-141; arXiv:1705.04303 [math.NT], 2017.
- Bernd C. Kellner, On the finiteness of Bernoulli polynomials whose derivative has only integral coefficients, 9 pp.; arXiv:2310.01325 [math.NT], 2023.
- Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017.
- Bernd C. Kellner and Jonathan Sondow, The denominators of power sums of arithmetic progressions, Integers 18 (2018), #A95, 17 pp.; arXiv:1705.05331 [math.NT], 2017.
- Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019.
Crossrefs
Programs
-
Maple
aList := len -> select(n -> denom(diff(bernoulli(n, x), `$`(x, 4))) = 1, [seq(1..len)]): aList(400);
-
Mathematica
(* From Bernd C. Kellner, Oct 04 2023 (Start) *) (* k-th derivative of BP *) k = 4; Select[Range[1000], Denominator[Together[D[BernoulliB[#, x], {x, k}]]] == 1&] (* Exact denominator formula *) SD[n_, p_] := If[n < 1 || p < 2, 0, Plus@@IntegerDigits[n, p]]; DBP[n_, k_] := Module[{m = n-k+1, fac = FactorialPower[n, k]}, If[n < 1 || k < 1 || n <= k, Return[1]]; Times@@Select[Prime[Range[PrimePi[(m+1)/(2 + Mod[m+1, 2])]]], !Divisible[fac, #] && SD[m, #] >= #&]]; k = 4; Select[Range[1000], DBP[#, k] == 1&] (* End *)
-
PARI
isok(k) = #select(x->denominator(x)>1, Vec(deriv(deriv(deriv(deriv(bernpol(k))))))) == 0; \\ Michel Marcus, Oct 03 2023
-
Python
from itertools import count, islice from sympy import Poly, diff, bernoulli from sympy.abc import x def A366187_gen(): # generator of terms return filter(lambda k:k<=4 or all(c.is_integer for c in Poly(diff(bernoulli(k,x),x,4)).coeffs()),count(1)) A366187_list = list(islice(A366187_gen(),40)) # Chai Wah Wu, Oct 03 2023
Formula
From Bernd C. Kellner, Oct 04 2023: (Start)
Let (n)_m be the falling factorial. Let s_p(n) be the sum of the p-adic digits of n.
The denominator of the fourth derivative of the n-th Bernoulli polynomial B(n, x) is given as follows (Kellner 2023, Theorem 12).
D_4(n) = 1 for 1 <= n <= 4. For n > 4, D_4(n) = A324370(n-3)/gcd(A324370(n-3), (n)3) = Product{prime p <= (n-2)/(2+((n-2) mod 2)): gcd(p,(n)_4)=1, s_p(n-3) >= p} p.
Then k is a term if and only if D_4(k) = 1. (End)
Comments