A366196 The number of ways to express n^n in the form a^b for positive integers a and b.
2, 2, 4, 2, 4, 2, 8, 6, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 8, 6, 4, 5, 6, 2, 8, 2, 12, 4, 4, 4, 12, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 6, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 16, 4, 8, 2, 6, 4, 8, 2, 12, 2, 4, 6, 6, 4, 8, 2, 10, 15, 4, 2, 12, 4
Offset: 2
Keywords
Examples
a(27) = 5, as "27^27 = a^b" has 5 positive integer solutions: 3^81, 27^27, 19683^9, 7625597484987^3, and (3^81)^1.
Programs
-
Maple
a:= n-> numtheory[tau](igcd(map(i-> i[2], ifactors(n)[2])[])*n): seq(a(n), n=2..100); # Alois P. Heinz, Oct 03 2023
-
Mathematica
intPowCountPos[n_] := Module[{m, F, i, t}, m = n (GCD @@ FactorInteger[n][[All, 2]]); t = 0; While[Mod[m, 2] == 0, t++; m = m/2]; t = t + 1; F = FactorInteger[m][[All, 2]]; If[m > 1, For[i = 1, i <= Length[F], i++, t = t (F[[i]] + 1)]; ]; Return[t]]
-
Python
from math import gcd from sympy import divisor_count, factorint def A366196(n): return divisor_count((m:=n*gcd(*factorint(n).values()))>>(t:=(m-1&~m).bit_length()))*(t+1) # Chai Wah Wu, Oct 04 2023