A366866 Number of binary relations R on [n] such that the transitive closure of R contains the identity relation.
1, 1, 7, 253, 39463, 24196201, 56481554827, 502872837857293, 17309567681965278223, 2333553047265268677638161, 1243013506394568266481053180947, 2629978323181659930952963974617537173, 22170279317365870690118601982232935268994583
Offset: 0
Keywords
Links
- D. A. Gregory, S. Kirkland, and N. J. Pullman, Power convergent Boolean matrices, Linear Algebra and its Applications, Volume 179, 15 January 1993, Pages 105-117.
- E. de Panafieu and S. Dovgal, Symbolic method and directed graph enumeration, arXiv:1903.09454 [math.CO], 2019.
- S. Schwarz, On the semigroup of binary relations on a finite set , Czechoslovak Mathematical Journal, 1970.
Programs
-
Mathematica
nn = 12; B[n_] := 2^Binomial[n, 2] n!; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i,1,58}]];ggf[egf_]:=Normal[Series[egf, {x, 0, nn}]] /.Table[x^i ->x^i/2^Binomial[i, 2], {i, 0, nn}];Table[B[n], {n, 0, nn}] CoefficientList[ Series[1/ggf[Exp[- (s[2 x] - x)]], {x, 0, nn}], x]
Formula
Sum_{n>=0} a_n*x^n/(2^n*binomial(n,2)) = 1/(E(x) @ exp(-(s(2x)-x))) where E(x) = Sum_{n>=0} x^n/(2^n*binomial(n,2)), s(x) is the e.g.f. for A003030, and @ is the exponential Hadamard product (see Panafieu and Dovgal).
Comments