cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A370385 Triangular array read by rows. T(n,k) is the number of binary relations R on [n] such that the unique idempotent relation in {R^i:i>=1} is a quasi-order containing exactly k strongly connected components.

Original entry on oeis.org

1, 1, 3, 4, 139, 66, 48, 25575, 9280, 3072, 1536, 18077431, 4498530, 1174800, 322560, 122880
Offset: 1

Views

Author

Geoffrey Critzer, Feb 18 2024

Keywords

Examples

			Triangle begins:
        1;
        1;
        3,       4;
      139,      66,      48;
    25575,    9280,    3072,   1536;
 18077431, 4498530, 1174800, 322560, 122880;
 ...
		

Crossrefs

Cf. A366866 (row sums), A070322 (column k=1), A011266 (main diagonal), A367948, A247231, A370464.

Programs

  • Mathematica
    nn = 5; B[n_] := n! 2^Binomial[n, 2]; s[x_, y_] := y x + (3 y + y^2) x^2/2! + (139 y + 3 y^2 + 2 y^3) x^3/3! + (25575 y + 103 y^2 + 12 y^3 + 6 y^4) x^4/
        4! + (18077431 y + 4815 y^2 + 230 y^3 + 60 y^4 + 24 y^5) x^5/5! ;
    ggf[egf_] :=Normal[Series[egf, {x, 0, nn}]] /.Table[x^i -> x^i/2^Binomial[i, 2], {i, 0, nn}]; Map[Select[#, # > 0 &] &,Table[B[n], {n, 0, nn}] CoefficientList[
       Series[1/ggf[Exp[-s[x, y]]], {x, 0, nn}], {x, y}]]

Formula

Sum_{n>=1} Sum_{k=1..n} T(n,k)*y^k*x^n/(n!*2^binomial(n,2)) = 1/(E(x) @ exp(-s(x,y))) where E(x) = Sum_{n>=0} x^n/(n!*2^binomial(n,2)) and @ is the exponential Hadamard product (see Panafieu and Dovgal) and s(x,y) is the e.g.f. for A367948.

A369397 Number of binary relations R on [n] such that the (unique) idempotent in {R,R^2,R^3,...} is an equivalence relation.

Original entry on oeis.org

1, 1, 5, 157, 26345, 18218521, 47136254765, 451286947588597, 16264532016440908625, 2253156851039460378774961, 1219026648017155982267265596885, 2601923405098893502520360223043594957, 22040885615442635622424409144799379027505465
Offset: 0

Views

Author

Geoffrey Critzer, Jan 22 2024

Keywords

Comments

Equivalently, a(n) is the number of binary relations R on [n] such that the Frobenius normal form has no 0-blocks on the diagonal and all off diagonal blocks are 0-blocks.

Crossrefs

Cf. A366866 (binary relations R on [n] such that the (unique) idempotent in {R,R^2,R^3,...} is a quasiorder), A365534, A366218, A365590, A355612, A365593, A366252, A366350, A366218.

Programs

  • Mathematica
    nn = 12; strong =Select[Import["https://oeis.org/A003030/b003030.txt", "Table"],
       Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]];
    Table[n!, {n, 0, nn}] CoefficientList[Series[Exp [s[2 x] - x], {x, 0, nn}], x]

Formula

E.g.f.: exp(s(2x)-x) where s(x) is the e.g.f. for A003030.

A370203 Triangular array read by rows. T(n,k) is the number of binary relations on [n] that have exactly k accessible points, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 3, 6, 7, 25, 75, 159, 253, 543, 2172, 6354, 17004, 39463, 29281, 146405, 532130, 1841650, 6808765, 24196201, 3781503, 22689018, 97165485, 395729820, 1801073385, 9917482698, 56481554827
Offset: 0

Views

Author

Geoffrey Critzer, Feb 11 2024

Keywords

Comments

Let x be in [n]. Then x is accessible by the binary relation R if (x,x) is in R^j for some j>=1. In other words, x is accesible by R if (x,x) is in the transitive closure of R. See Schwarz link.

Examples

			Triangle begins:
     1;
     1,      1;
     3,      6,      7;
    25,     75,    159,     253;
   543,   2172,   6354,   17004,   39463;
 29281, 146405, 532130, 1841650, 6808765, 24196201;
...
		

Crossrefs

Cf. A002416 (row sums), A003024 (column k = 0), A366866 (main diagonal), A003030.

Programs

  • Mathematica
    nn = 6; B[n_] := n! 2^Binomial[n, 2]; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]];s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]];
    ggf[egf_] := Normal[Series[egf, {x, 0, nn}]] /. Table[x^i -> x^i/2^Binomial[i, 2], {i, 0, nn}]; Map[Select[#, # > 0 &] &, Table[B[n], {n, 0, nn}] CoefficientList[Series[1/ggf[Exp[-(s[2 y x] - y x + x)]], {x, 0, nn}], {x, y}]]

Formula

Sum_{n>=0} T(n,k)*y^k*x^n/(n!*2^binomial(n,2)) = 1/(E(x) @ exp(-(s(2yx)-yx + x))) where E(x) = Sum_{n>=0} x^n/(n!*2^binomial(n,2)), s(x) = Sum_{n>=0} A003030(n)x^n/n! and @ is the exponential Hadamard product (see Panafieu and Dovgal).
Showing 1-3 of 3 results.