A366292 Dirichlet inverse of A353271, where A353271(n) is the numerator of n / A005940(1+(3*A156552(n))).
1, -1, -1, -1, -1, -1, -1, -1, -2, -3, -1, 1, -1, -5, -3, -1, -1, 0, -1, 9, -5, -9, -1, 11, -4, -11, -4, 13, -1, 5, -1, -1, -9, -15, -5, 6, -1, -17, -11, 5, -1, 21, -1, 21, -2, -21, -1, 5, -6, -8, -15, 25, -1, 22, -9, 7, -17, -27, -1, 3, -1, -29, 14, -1, -11, 11, -1, 33, -21, -3, -1, 16, -1, -35, -8, 37, -9, 13
Offset: 1
Keywords
Links
Crossrefs
Programs
-
PARI
A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); }; A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res }; A332449(n) = A005940(1+(3*A156552(n))); A353271(n) = (n / gcd(n, A332449(n))); memoA366292 = Map(); A366292(n) = if(1==n,1,my(v); if(mapisdefined(memoA366292,n,&v), v, v = -sumdiv(n,d,if(d
A353271(n/d)*A366292(d),0)); mapput(memoA366292,n,v); (v)));
Formula
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, dA353271(n/d) * a(d).