A366318 Heinz numbers of integer partitions that are of length 2 or begin with n/2, where n is the sum of all parts.
4, 6, 9, 10, 12, 14, 15, 21, 22, 25, 26, 30, 33, 34, 35, 38, 39, 40, 46, 49, 51, 55, 57, 58, 62, 63, 65, 69, 70, 74, 77, 82, 84, 85, 86, 87, 91, 93, 94, 95, 106, 111, 112, 115, 118, 119, 121, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 154, 155, 158, 159
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 4: {1,1} 38: {1,8} 77: {4,5} 6: {1,2} 39: {2,6} 82: {1,13} 9: {2,2} 40: {1,1,1,3} 84: {1,1,2,4} 10: {1,3} 46: {1,9} 85: {3,7} 12: {1,1,2} 49: {4,4} 86: {1,14} 14: {1,4} 51: {2,7} 87: {2,10} 15: {2,3} 55: {3,5} 91: {4,6} 21: {2,4} 57: {2,8} 93: {2,11} 22: {1,5} 58: {1,10} 94: {1,15} 25: {3,3} 62: {1,11} 95: {3,8} 26: {1,6} 63: {2,2,4} 106: {1,16} 30: {1,2,3} 65: {3,6} 111: {2,12} 33: {2,5} 69: {2,9} 112: {1,1,1,1,4} 34: {1,7} 70: {1,3,4} 115: {3,9} 35: {3,4} 74: {1,12} 118: {1,17}
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],Length[prix[#]]==2||MemberQ[prix[#],Total[prix[#]]/2]&]
Comments