cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A366326 G.f. satisfies A(x) = (1 + x) * (1 + x/A(x)^2).

Original entry on oeis.org

1, 2, -3, 14, -78, 479, -3131, 21372, -150588, 1087057, -7998295, 59763129, -452257495, 3459109408, -26697940390, 207672518808, -1626400971710, 12813379464399, -101482102525511, 807524595076284, -6452856224076654, 51760509258982478, -416620859045829372
Offset: 0

Views

Author

Seiichi Manyama, Oct 07 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(3*k-1, k)*binomial(n+k-2, n-k)/(3*k-1));

Formula

a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(3*k-1,k) * binomial(n+k-2,n-k)/(3*k-1).

A366325 G.f. satisfies A(x) = (1 + x) * (1 + x/A(x)).

Original entry on oeis.org

1, 2, -1, 3, -10, 36, -137, 543, -2219, 9285, -39587, 171369, -751236, 3328218, -14878455, 67030785, -304036170, 1387247580, -6363044315, 29323149825, -135700543190, 630375241380, -2938391049395, 13739779184085, -64430797069375, 302934667061301, -1427763630578197
Offset: 0

Views

Author

Seiichi Manyama, Oct 07 2023

Keywords

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n = 1 then 2 elif n = 2 then -1 else (-3*(2*n - 3)*a(n-1) - 5*(n - 3)*a(n-2))/n fi; end:
    seq(a(n), n = 1..30); # Peter Bala, Sep 10 2024
  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(2*k-1, k)*binomial(n-2, n-k)/(2*k-1));

Formula

G.f.: A(x) = -2*x*(1+x) / (1+x-sqrt((1+x)*(1+5*x))).
a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(2*k-1,k) * binomial(n-2,n-k)/(2*k-1).
a(n) ~ -(-1)^n * 5^(n - 1/2) / (2 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Oct 07 2023
From Peter Bala, Sep 10 2024: (Start)
a(n) = 1/(1 - n) * Sum_{k = 0..n} binomial(-n+k, k)*binomial(-n+k+1, n-k) for n not equal to 1. Cf. A007863.
a(n) = Sum_{k = 0..n-2} binomial(-n+k+1, k)*binomial(-n+k+1, n-k)/(-n+k+1) for n >= 2.
P-recursive: n*a(n) = - 3*(2*n - 3)*a(n-1) - 5*(n - 3)*a(n-2) with a(1) = 2 and a(2) = -1. (End)

A366328 G.f. satisfies A(x) = (1 + x) * (1 + x/A(x)^4).

Original entry on oeis.org

1, 2, -7, 60, -612, 6898, -82806, 1038076, -13431940, 178040315, -2405137161, 32992706368, -458336721104, 6435090557964, -91167680664004, 1301665779507128, -18710805300530504, 270559054510943509, -3932893180646204203, 57437414168562779574, -842365843304975785062
Offset: 0

Views

Author

Seiichi Manyama, Oct 07 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(5*k-1, k)*binomial(n+3*k-2, n-k)/(5*k-1));

Formula

a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(5*k-1,k) * binomial(n+3*k-2,n-k)/(5*k-1).

A366358 G.f. satisfies A(x) = 1/(1 - x) + x/A(x)^3.

Original entry on oeis.org

1, 2, -5, 40, -319, 2908, -28151, 284908, -2977115, 31875709, -347884084, 3855802690, -43283239649, 491083601339, -5622489637406, 64877058557080, -753705528179423, 8808460811302729, -103487549564845199, 1221565052783161764, -14480208437556590345
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(4*k-1, k)*binomial(4*k-1, n-k)/(4*k-1));

Formula

a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(4*k-1,k) * binomial(4*k-1,n-k)/(4*k-1).
Showing 1-4 of 4 results.