cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A139550 a(n) = lcm(1..floor(n/2)).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 6, 6, 12, 12, 60, 60, 60, 60, 420, 420, 840, 840, 2520, 2520, 2520, 2520, 27720, 27720, 27720, 27720, 360360, 360360, 360360, 360360, 360360, 360360, 720720, 720720, 12252240, 12252240, 12252240, 12252240, 232792560, 232792560
Offset: 0

Views

Author

Mats Granvik, Apr 27 2008

Keywords

Comments

Row products of A139549.

Crossrefs

Programs

  • Maple
    LCM := proc (n) local i; ilcm(seq(i,i=1..n)) end; A139550 := n -> LCM(n/2); seq(A139550(n),n=0..40); # Peter Luschny, Jun 09 2011
  • Mathematica
    Join[{1,1},Table[LCM@@Range[Floor[n/2]],{n,2,40}]] (* Harvey P. Dale, Jan 12 2024 *)

Formula

a(n) = A003418(floor(n/2)) = A366368(n) / A003418(n) = A003418(n) / A366369(n). - Max Alekseyev, Oct 08 2023

Extensions

Offset corrected by Peter Luschny, Jun 09 2011

A366369 a(n) = product of primes p such that p^k <= n < 2*p^k for some k >= 1.

Original entry on oeis.org

1, 1, 2, 6, 6, 30, 10, 70, 70, 210, 42, 462, 462, 6006, 858, 858, 858, 14586, 4862, 92378, 92378, 92378, 8398, 193154, 193154, 965770, 74290, 222870, 222870, 6463230, 6463230, 200360130, 200360130, 200360130, 11785890, 11785890, 11785890, 436077930, 22951470, 22951470, 22951470, 941010270, 941010270
Offset: 0

Views

Author

Max Alekseyev, Oct 08 2023

Keywords

Crossrefs

Subsequence of A005117.

Programs

  • PARI
    a366369(n) = my(r=1); forprime(p=2, n, if(n<2*p^logint(n,p), r*=p)); r;

Formula

a(n) = A003418(n) / A139550(n) = A003418(n) / A003418(floor(n/2)).
a(n) = A003418(n)^2 / A366368(n).
Showing 1-2 of 2 results.