cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366388 The number of edges minus the number of leafs in the rooted tree with Matula-Goebel number n.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 1, 0, 2, 2, 3, 1, 2, 1, 3, 0, 2, 2, 1, 2, 2, 3, 3, 1, 4, 2, 3, 1, 3, 3, 4, 0, 4, 2, 3, 2, 2, 1, 3, 2, 3, 2, 2, 3, 4, 3, 4, 1, 2, 4, 3, 2, 1, 3, 5, 1, 2, 3, 3, 3, 3, 4, 3, 0, 4, 4, 2, 2, 4, 3, 3, 2, 3, 2, 5, 1, 4, 3, 4, 2, 4, 3, 4, 2, 4, 2, 4, 3, 2, 4, 3, 3, 5, 4, 3, 1, 5, 2, 5, 4, 3, 3, 4, 2, 4
Offset: 1

Views

Author

Antti Karttunen, Oct 23 2023

Keywords

Comments

Number of iterations of A366385 needed to reach the nearest power of 2.

Examples

			See illustrations in A061773.
		

Crossrefs

Cf. A109129 (gives the exponent of the nearest power of 2 reached), A196050 (distance to the farthest power of 2, which is 1).
Cf. also A329697, A331410.

Programs

  • Mathematica
    Array[-1 + Length@ NestWhileList[PrimePi[#2]*#1/#2 & @@ {#, FactorInteger[#][[-1, 1]]} &, #, ! IntegerQ@ Log2[#] &] &, 105] (* Michael De Vlieger, Oct 23 2023 *)
  • PARI
    A366388(n) = if(n<=2, 0, if(isprime(n), 1+A366388(primepi(n)), my(f=factor(n)); (apply(A366388, f[, 1])~ * f[, 2])));
    
  • PARI
    A006530(n) = if(1==n, n, my(f=factor(n)); f[#f~, 1]);
    A366385(n) = { my(gpf=A006530(n)); primepi(gpf)*(n/gpf); };
    A366388(n) = if(n && !bitand(n,n-1),0,1+A366388(A366385(n)));

Formula

Totally additive with a(2) = 0, and for n > 1, a(prime(n)) = 1 + a(n).
a(n) = A196050(n) - A109129(n).
a(2n) = a(A000265(n)) = a(n).