cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A366400 G.f. A(x) satisfies A(x) = (1 + x * A(x)^(5/2)) / (1 - x).

Original entry on oeis.org

1, 2, 7, 32, 167, 942, 5593, 34438, 217888, 1407938, 9252168, 61641846, 415412036, 2826736736, 19395080061, 134034296976, 932110471089, 6518146460274, 45805553781349, 323313555424924, 2291130483593189, 16294149468133930, 116259325138469680
Offset: 0

Views

Author

Seiichi Manyama, Oct 09 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+3*k/2, n-k)*binomial(5*k/2, k)/(3*k/2+1));
    
  • PARI
    a(n, r=2, s=-1, t=4, u=2) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r)); \\ Seiichi Manyama, Dec 12 2024

Formula

a(n) = Sum_{k=0..n} binomial(n+3*k/2,n-k) * binomial(5*k/2,k) / (3*k/2+1).
From Seiichi Manyama, Dec 12 2024: (Start)
G.f. A(x) satisfies:
(1) A(x) = ( 1 + x*A(x)^2/(1 + x*A(x)) )^2.
(2) A(x) = 1/( 1 - x*A(x)^(3/2)/(1 + x*A(x)) )^2.
(3) A(x) = 1 + x * A(x) * (1 + A(x)^(3/2)).
(4) A(x) = B(x)^2 where B(x) is the g.f. of A219537.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r). (End)
G.f.: Sum_{k>=0} binomial(5*k/2, k)*x^k/((3*k/2 + 1)*(1 - x)^(5*k/2 + 1)). - Miles Wilson, Feb 02 2025

A366401 G.f. A(x) satisfies A(x) = (1 + x * A(x)^(7/2)) / (1 - x).

Original entry on oeis.org

1, 2, 9, 58, 436, 3572, 30935, 278532, 2581043, 24453404, 235790159, 2306367444, 22829030276, 228240387070, 2301498462245, 23379656027868, 239038022347243, 2457891085704180, 25400777844198274, 263685720722690420, 2748421883496133866
Offset: 0

Views

Author

Seiichi Manyama, Oct 09 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+5*k/2, n-k)*binomial(7*k/2, k)/(5*k/2+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+5*k/2,n-k) * binomial(7*k/2,k) / (5*k/2+1).

A366404 G.f. A(x) satisfies A(x) = (1 + x / A(x)^(3/2)) / (1 - x).

Original entry on oeis.org

1, 2, -1, 8, -29, 142, -707, 3714, -20106, 111570, -631046, 3624898, -21089378, 124014048, -735906537, 4401187158, -26501494072, 160532592098, -977574311830, 5981088128586, -36748815585834, 226651808352306, -1402726443269229, 8708648263017666
Offset: 0

Views

Author

Seiichi Manyama, Oct 09 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(5*k/2-1, k)*binomial(3*k/2-1, n-k)/(5*k/2-1));

Formula

a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(5*k/2-1,k) * binomial(3*k/2-1,n-k) / (5*k/2-1).

A366405 G.f. A(x) satisfies A(x) = (1 + x / A(x)^(5/2)) / (1 - x).

Original entry on oeis.org

1, 2, -3, 22, -138, 1012, -7839, 63506, -531024, 4549276, -39723484, 352237844, -3163252976, 28711196184, -262964888021, 2427319896584, -22557930343459, 210889624536396, -1981972609174109, 18714482015314016, -177453862702083994, 1689045253793239952
Offset: 0

Views

Author

Seiichi Manyama, Oct 09 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(7*k/2-1, k)*binomial(5*k/2-1, n-k)/(7*k/2-1));

Formula

a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(7*k/2-1,k) * binomial(5*k/2-1,n-k) / (7*k/2-1).

A366406 G.f. A(x) satisfies A(x) = (1 + x / A(x)^(7/2)) / (1 - x).

Original entry on oeis.org

1, 2, -5, 44, -383, 3782, -39653, 434324, -4910009, 56862170, -671131131, 8043570088, -97629201137, 1197607836678, -14824033357867, 184923041147906, -2322472423266102, 29341825623660226, -372652945642370654, 4755048678561786946, -60929667733382420198
Offset: 0

Views

Author

Seiichi Manyama, Oct 09 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(9*k/2-1, k)*binomial(7*k/2-1, n-k)/(9*k/2-1));

Formula

a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(9*k/2-1,k) * binomial(7*k/2-1,n-k) / (9*k/2-1).

A366403 G.f. A(x) satisfies A(x) = (1 + x / sqrt(A(x))) / (1 - x).

Original entry on oeis.org

1, 2, 1, 2, 0, 4, -5, 16, -35, 92, -231, 604, -1584, 4214, -11297, 30538, -83096, 227476, -625991, 1730788, -4805594, 13393690, -37458329, 105089230, -295673993, 834086422, -2358641375, 6684761126, -18985057350, 54022715452, -154000562757, 439742222072
Offset: 0

Views

Author

Seiichi Manyama, Oct 09 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(3*k/2-1, k)*binomial(k/2-1, n-k)/(3*k/2-1));

Formula

a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(3*k/2-1,k) * binomial(k/2-1,n-k) / (3*k/2-1).

A366407 G.f. A(x) satisfies A(x) = (1 + x / A(x)^(9/2)) / (1 - x).

Original entry on oeis.org

1, 2, -7, 74, -820, 10196, -134785, 1860668, -26508457, 386843804, -5753126477, 86878155652, -1328593620692, 20533664196478, -320220157730975, 5032648114664896, -79629405527982623, 1267425784159379572, -20279086501234998596, 325989622456860054852
Offset: 0

Views

Author

Seiichi Manyama, Oct 09 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(11*k/2-1, k)*binomial(9*k/2-1, n-k)/(11*k/2-1));

Formula

a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(11*k/2-1,k) * binomial(9*k/2-1,n-k) / (11*k/2-1).

A366456 G.f. A(x) satisfies A(x) = 1 + x + x/A(x)^(7/2).

Original entry on oeis.org

1, 2, -7, 56, -532, 5600, -62860, 737324, -8929726, 110811344, -1401640814, 18004922936, -234243536436, 3080152906096, -40870739065996, 546563064528906, -7358930622768977, 99672580921800656, -1357142384455626909, 18565841939010374736, -255054402946387767408
Offset: 0

Views

Author

Seiichi Manyama, Oct 10 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(9*k/2-1, k)*binomial(n+7*k/2-2, n-k)/(9*k/2-1));

Formula

G.f.: A(x) = 1/B(-x) where B(x) is the g.f. of A366402.
a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(9*k/2-1,k) * binomial(n+7*k/2-2,n-k) / (9*k/2-1).

A378957 G.f. A(x) satisfies A(x) = ( (1 + x * A(x)^9) / (1 - x) )^(1/2).

Original entry on oeis.org

1, 1, 5, 41, 399, 4263, 48335, 571061, 6953854, 86659366, 1099882862, 14168133882, 184756656826, 2434227814578, 32354612273352, 433312539103431, 5841624625609747, 79211315586085551, 1079630126313403483, 14782787622359779197, 203248589087860373309, 2804882047701189052925
Offset: 0

Views

Author

Seiichi Manyama, Dec 12 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*binomial(n+7*k/2+1/2, n)/(2*n+7*k+1));

Formula

G.f. A(x) satisfies:
(1) A(x) = 1 + x * A(x)^2 * (1 - A(x) + A(x)^2 - A(x)^3 + A(x)^4 - A(x)^5 + A(x)^6).
(2) A(x) = sqrt(B(x)) where B(x) is the g.f. of A366402.
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+7*k/2+1/2,n)/(2*n+7*k+1).
Showing 1-9 of 9 results.