A366420 Number of distinct integers of the form (x^n + y^n) mod n^4.
1, 9, 45, 35, 325, 95, 931, 259, 1215, 625, 6171, 627, 12337, 2210, 14625, 2049, 32657, 2435, 58843, 1683, 11025, 12105, 140185, 4883, 40625, 16055, 32805, 14586, 236321, 11875, 375751, 16385, 277695, 59245, 302575, 16071, 789913, 97475, 98865, 13107, 1413721, 9405, 1399693
Offset: 1
Keywords
Programs
-
PARI
a(n) = #setbinop((x, y)->Mod(x, n^4)^n+Mod(y, n^4)^n, [0..n^3-1]); \\ Michel Marcus, Oct 14 2023
-
Python
def A366420(n): m = n**4 return len({(pow(x,n,m)+pow(y,n,m))%m for x in range(n**3) for y in range(x+1)}) # Chai Wah Wu, Nov 12 2023
Comments