cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366430 Triprimes whose reversal is also a triprime.

Original entry on oeis.org

8, 44, 66, 99, 117, 147, 165, 171, 212, 222, 242, 244, 246, 282, 285, 286, 290, 292, 333, 338, 343, 363, 366, 369, 404, 406, 418, 425, 434, 435, 438, 442, 474, 475, 494, 498, 506, 507, 508, 524, 534, 539, 548, 555, 561, 574, 575, 582, 595, 604, 605, 606, 609, 628, 642, 646, 663, 670, 682, 705
Offset: 1

Views

Author

Zak Seidov and Robert Israel, Nov 06 2023

Keywords

Examples

			a(5) = 117 is a term because 117 = 3^2 * 13 has 3 prime factors, counted with multiplicity, and so does its reversal 711 = 3^2 * 79.
		

Crossrefs

Cf. A014612, A085751. Contains A046329. Includes 10*k for k in A367151.

Programs

  • Maple
    rev:= proc(n) local L,i;
      L:= convert(n,base,10);
      add(L[-i]*10^(i-1),i=1..nops(L))
    end proc:
    select(t -> numtheory:-bigomega(t) = 3 and numtheory:-bigomega(rev(t))=3, [$1..10000]);
  • Mathematica
    Select[Range[710], PrimeOmega[#]==3&&PrimeOmega[FromDigits[Reverse[IntegerDigits[#]]]]==3&] (* Stefano Spezia, Nov 07 2023 *)
  • Python
    from sympy import factorint
    def tp(n): return sum(factorint(n).values()) == 3
    def ok(n): return tp(n) and tp(int(str(n)[::-1]))
    print([k for k in range(10**3) if ok(k)]) # Michael S. Branicky, Nov 21 2023