cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A366534 The number of unitary divisors of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 2, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 4, 4, 2, 2, 8, 2, 2, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 2, 4, 2, 4, 4, 4, 4, 4, 2, 2, 4, 4, 8, 2, 4, 8, 2, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 2, 8, 2, 4, 8, 4, 2, 2, 8, 4, 2, 8, 4, 4, 4, 8, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2023

Keywords

Crossrefs

Similar sequences: A366536, A366538.

Programs

  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, OddQ], 2^Length[e], Nothing]]; f[1] = 1; Array[f, 150]
  • PARI
    lista(max) = for(k = 1, max, my(e = factor(k)[, 2], isexpodd = 1); for(i = 1, #e, if(!(e[i] % 2), isexpodd = 0; break)); if(isexpodd, print1(2^(#e), ", ")));

Formula

a(n) = A034444(A268335(n)).

A366536 The number of unitary divisors of the cubefree numbers (A004709).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 2, 4, 4, 2, 4, 2, 4, 4, 4, 2, 2, 4, 4, 2, 8, 2, 4, 4, 4, 4, 2, 4, 4, 2, 8, 2, 4, 4, 4, 2, 2, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 8, 2, 4, 4, 8, 2, 2, 4, 4, 4, 4, 8, 2, 4, 2, 8, 4, 4, 4, 2, 8, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2023

Keywords

Comments

The number of unitary divisors of the squarefree numbers (A005117) is the same as the number of divisors of the squarefree numbers (A072048), because all the divisors of a squarefree number are unitary.

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, # < 3 &], 2^Length[e], Nothing]]; f[1] = 1; Array[f, 150]
  • PARI
    lista(max) = for(k = 1, max, my(e = factor(k)[, 2], iscubefree = 1); for(i = 1, #e, if(e[i] > 2, iscubefree = 0; break)); if(iscubefree, print1(2^(#e), ", ")));
    
  • Python
    from sympy.ntheory.factor_ import udivisor_count
    from sympy import mobius, integer_nthroot
    def A366536(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return udivisor_count(m) # Chai Wah Wu, Aug 05 2024

Formula

a(n) = A034444(A004709(n)).

A368473 Product of exponents of prime factorization of the exponentially 2^n-numbers (A138302).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2023

Keywords

Comments

The terms of A005361 that are powers of 2 (A000079).
The first position of 2^k, for k = 0, 1, ..., is 1, 4, 15, 126, 1134, ..., which is the position of A085629(2^k) in A138302.

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{p = Times @@ FactorInteger[n][[;; , 2]]}, If[p == 2^IntegerExponent[p, 2], p, Nothing]]; Array[f, 150]
  • PARI
    lista(kmax) = {my(p); for(k = 1, kmax, p = vecprod(factor(k)[, 2]); if(p >> valuation(p,2) == 1, print1(p, ", ")));}

Formula

a(n) = A005361(A138302(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (1/d) * Product_{p prime} (1 + Sum_{k>=0} 2^k/p^(2^k)) = 1.504710204899266020302..., where d = A271727 is the asymptotic density of the exponentially 2^n-numbers.

A366539 The sum of unitary divisors of the exponentially 2^n-numbers (A138302).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 26, 42, 40, 30, 72, 32, 48, 54, 48, 50, 38, 60, 56, 42, 96, 44, 60, 60, 72, 48, 68, 50, 78, 72, 70, 54, 72, 80, 90, 60, 120, 62, 96, 80, 84, 144, 68, 90, 96, 144, 72, 74, 114, 104
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2023

Keywords

Comments

Also the sum of infinitary divisors of the terms of A138302, since A138302 is also the sequence of numbers whose sets of unitary divisors (A077610) and infinitary divisors (A077609) coincide.

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n], e}, e = f[[;;, 2]]; If[AllTrue[e, # == 2^IntegerExponent[#, 2] &], Times @@ (1 + Power @@@ f), Nothing]]; s[1] = 1; Array[s, 100]
  • PARI
    lista(max) = for(k = 1, max, my(f = factor(k), e = f[, 2], is = 1); for(i = 1, #e, if(e[i] >> valuation(e[i], 2) > 1, is = 0; break)); if(is, print1(prod(i = 1, #e, 1 + f[i, 1]^e[i]), ", ")));

Formula

a(n) = A034448(A138302(n)).
a(n) = A049417(A138302(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = (1/d^2) * Product_{p prime} f(1/p) = 1.58107339851877782285..., d = A271727 is the asymptotic density of A138302, and f(x) = 1 + x^2 + 2 * Sum_{k>=2} (x^(2^k)-x^(2^k+1)).
The asymptotic mean of the unitary abundancy index of A138302: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A138302(k) = c * d = 1.37948208055913856387... .
Showing 1-4 of 4 results.