cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A366535 The sum of unitary divisors of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 3, 4, 6, 12, 8, 9, 18, 12, 14, 24, 24, 18, 20, 32, 36, 24, 36, 42, 28, 30, 72, 32, 33, 48, 54, 48, 38, 60, 56, 54, 42, 96, 44, 72, 48, 72, 54, 84, 72, 72, 80, 90, 60, 62, 96, 84, 144, 68, 96, 144, 72, 74, 114, 96, 168, 80, 126, 84, 108, 132, 120, 108, 90, 112
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2023

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n], e}, e = f[[;;, 2]]; If[AllTrue[e, OddQ], Times @@ (1 + Power @@@ f), Nothing]]; s[1] = 1; Array[s, 100]
  • PARI
    lista(max) = for(k = 1, max, my(f = factor(k), e = f[, 2], isexpodd = 1); for(i = 1, #e, if(!(e[i] % 2), isexpodd = 0; break)); if(isexpodd, print1(prod(i = 1, #e, 1 + f[i, 1]^e[i]), ", ")));

Formula

a(n) = A034448(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = (zeta(4)/d^2) * Product_{p prime} (1 - 2/p^4 + 1/p^5) = 1.92835521961603199612..., d = A065463 is the asymptotic density of the exponentially odd numbers.
The asymptotic mean of the unitary abundancy index of the exponentially odd numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A268335(k) = c * d = 1.35841479521454692063... .

A366536 The number of unitary divisors of the cubefree numbers (A004709).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 2, 4, 4, 2, 4, 2, 4, 4, 4, 2, 2, 4, 4, 2, 8, 2, 4, 4, 4, 4, 2, 4, 4, 2, 8, 2, 4, 4, 4, 2, 2, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 8, 2, 4, 4, 8, 2, 2, 4, 4, 4, 4, 8, 2, 4, 2, 8, 4, 4, 4, 2, 8, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2023

Keywords

Comments

The number of unitary divisors of the squarefree numbers (A005117) is the same as the number of divisors of the squarefree numbers (A072048), because all the divisors of a squarefree number are unitary.

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, # < 3 &], 2^Length[e], Nothing]]; f[1] = 1; Array[f, 150]
  • PARI
    lista(max) = for(k = 1, max, my(e = factor(k)[, 2], iscubefree = 1); for(i = 1, #e, if(e[i] > 2, iscubefree = 0; break)); if(iscubefree, print1(2^(#e), ", ")));
    
  • Python
    from sympy.ntheory.factor_ import udivisor_count
    from sympy import mobius, integer_nthroot
    def A366536(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return udivisor_count(m) # Chai Wah Wu, Aug 05 2024

Formula

a(n) = A034444(A004709(n)).

A374456 The Euler phi function values of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 1, 2, 4, 2, 6, 4, 4, 10, 12, 6, 8, 16, 18, 12, 10, 22, 8, 12, 18, 28, 8, 30, 16, 20, 16, 24, 36, 18, 24, 16, 40, 12, 42, 22, 46, 32, 52, 18, 40, 24, 36, 28, 58, 60, 30, 48, 20, 66, 44, 24, 70, 72, 36, 60, 24, 78, 40, 82, 64, 42, 56, 40, 88, 72, 60, 46, 72, 32, 96
Offset: 1

Views

Author

Amiram Eldar, Jul 09 2024

Keywords

Crossrefs

Similar sequences related to phi: A002618, A049200, A323333, A358039.
Similar sequences related to exponentially odd numbers: A366438, A366439, A366534, A366535, A367417, A368711, A374457.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p-1) * p^(e-1), 0]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 100], # > 0 &]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] % 2, (f[i, 1]-1) * f[i, 1]^(f[i, 2] - 1), 0));}
    lista(kmax) = {my(s1); for(k = 1, kmax, s1 = s(k); if(s1 > 0, print1(s1, ", ")));}

Formula

a(n) = A000010(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A307868 / A065463^2 = 0.95051132596733153581... .

A366538 The number of unitary divisors of the exponentially 2^n-numbers (A138302).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 2, 4, 4, 2, 8, 2, 4, 4, 4, 4, 2, 4, 4, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 8, 2, 4, 4, 8, 2, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4, 2, 8, 4, 4, 4, 4, 4, 2, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2023

Keywords

Comments

Also, the number of infinitary divisors of the terms of A138302, since A138302 is also the sequence of numbers whose sets of unitary divisors (A077610) and infinitary divisors (A077609) coincide.

Crossrefs

Similar sequences: A366534, A366536.

Programs

  • Mathematica
    f[n_] := Module[{e = FactorInteger[n][[;;, 2]]}, If[AllTrue[e, # == 2^IntegerExponent[#, 2] &], 2^Length[e], Nothing]]; f[1] = 1; Array[f, 150]
  • PARI
    lista(max) = for(k = 1, max, my(e = factor(k)[, 2], is = 1); for(i = 1, #e, if(e[i] >> valuation(e[i], 2) > 1, is = 0; break)); if(is, print1(2^#e, ", ")));

Formula

a(n) = A034444(A138302(n)).
a(n) = A037445(A138302(n)).

A374457 The Dedekind psi function values of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 3, 4, 6, 12, 8, 12, 18, 12, 14, 24, 24, 18, 20, 32, 36, 24, 48, 42, 36, 30, 72, 32, 48, 48, 54, 48, 38, 60, 56, 72, 42, 96, 44, 72, 48, 72, 54, 108, 72, 96, 80, 90, 60, 62, 96, 84, 144, 68, 96, 144, 72, 74, 114, 96, 168, 80, 126, 84, 108, 132, 120, 144, 90
Offset: 1

Views

Author

Amiram Eldar, Jul 09 2024

Keywords

Crossrefs

Similar sequences related to psi: A000082, A033196, A323332, A371413, A371415.
Similar sequences related to exponentially odd numbers: A366438, A366439, A366534, A366535, A367417, A368711, A374456.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p+1) * p^(e-1), 0]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 100], # > 0 &]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] % 2, (f[i, 1]+1) * f[i, 1]^(f[i, 2] - 1), 0));}
    lista(kmax) = {my(s1); for(k = 1, kmax, s1 = s(k); if(s1 > 0, print1(s1, ", ")));}

Formula

a(n) = A001615(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 / A065463^2 = 2.01515877170903249510... .

A382660 The unitary totient function applied to the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 1, 2, 4, 2, 6, 7, 4, 10, 12, 6, 8, 16, 18, 12, 10, 22, 14, 12, 26, 28, 8, 30, 31, 20, 16, 24, 36, 18, 24, 28, 40, 12, 42, 22, 46, 32, 52, 26, 40, 42, 36, 28, 58, 60, 30, 48, 20, 66, 44, 24, 70, 72, 36, 60, 24, 78, 40, 82, 64, 42, 56, 70, 88, 72, 60, 46, 72
Offset: 1

Views

Author

Amiram Eldar, Apr 02 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^e-1; uphi[1] = 1; uphi[n_] := Times @@ f @@@ FactorInteger[n]; expOddQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], OddQ]; uphi /@ Select[Range[100], expOddQ]
  • PARI
    uphi(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^f[i, 2]-1);}
    isexpodd(n) = {my(f = factor(n)); for(i=1, #f~, if(!(f[i, 2] % 2), return (0))); 1;}
    list(lim) = apply(uphi, select(isexpodd, vector(lim, i, i)));

Formula

a(n) = A047994(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(4)/(2*d^2)) * Product_{p prime} (1 - 2/p^2 + 2/p^3 - 2/p^4 + 1/p^5) = 0.504949539649594981601..., and d = A065463 is the asymptotic density of the exponentially odd numbers.

A382661 The unitary Jordan totient function applied to the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 3, 8, 24, 24, 48, 63, 72, 120, 168, 144, 192, 288, 360, 384, 360, 528, 504, 504, 728, 840, 576, 960, 1023, 960, 864, 1152, 1368, 1080, 1344, 1512, 1680, 1152, 1848, 1584, 2208, 2304, 2808, 2184, 2880, 3024, 2880, 2520, 3480, 3720, 2880, 4032, 2880, 4488, 4224
Offset: 1

Views

Author

Amiram Eldar, Apr 02 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2*e)-1; uj2[1] = 1; uj2[n_] := Times @@ f @@@ FactorInteger[n]; expOddQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], OddQ]; uj2 /@ Select[Range[100], expOddQ]
  • PARI
    uj2(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^(2*f[i, 2])-1);}
    isexpodd(n) = {my(f = factor(n)); for(i=1, #f~, if(!(f[i, 2] % 2), return (0))); 1;}
    list(lim) = apply(uj2, select(isexpodd, vector(lim, i, i)));

Formula

a(n) = A191414(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(6)/(3*d^3)) * Product_{p prime} (1 - 1/p^2 + 1/p^5 - 2/p^6 + 1/p^7) = 0.59726984314764530141..., and d = A065463 is the asymptotic density of the exponentially odd numbers.

A380326 a(n) is the sum of squarefree divisors of the n-th exponentially odd number.

Original entry on oeis.org

1, 3, 4, 6, 12, 8, 3, 18, 12, 14, 24, 24, 18, 20, 32, 36, 24, 12, 42, 4, 30, 72, 32, 3, 48, 54, 48, 38, 60, 56, 18, 42, 96, 44, 72, 48, 72, 54, 12, 72, 24, 80, 90, 60, 62, 96, 84, 144, 68, 96, 144, 72, 74, 114, 96, 168, 80, 126, 84, 108, 132, 120, 36, 90, 112
Offset: 1

Views

Author

Amiram Eldar, Jan 20 2025

Keywords

Comments

The number of squarefree divisors of the n-th exponentially odd number is A366534(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p + 1; s[n_] := Module[{fct = FactorInteger[n]}, If[AllTrue[fct[[;; , 2]], OddQ], Times @@ f @@@ fct, Nothing]]; s[1] = 1; Array[s, 100]
  • PARI
    A048250(f) = vecprod(apply(x -> x+1, f[, 1]));
    list(lim) = for(k = 1, lim, my(f = factor(k), isexpodd = 1); for(i = 1, #f~, if(!(f[i, 2] % 2), isexpodd = 0; break)); if(isexpodd, print1(A048250(f), ", ")));

Formula

a(n) = A048250(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = (1/d^2) * Product_{p prime} (1 - 1/(p*(p^2+1))) = 1.73161118511498727822..., and d = A065463 is the asymptotic density of the exponentially odd numbers.
Showing 1-8 of 8 results.