cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A366589 G.f. A(x) satisfies A(x) = 1 + x^4*(1+x)*A(x)^2.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 0, 2, 4, 2, 0, 5, 15, 15, 5, 14, 56, 84, 56, 56, 210, 420, 420, 342, 834, 1980, 2640, 2409, 3795, 9141, 15015, 16445, 20449, 43043, 80509, 104962, 123838, 215072, 419848, 630838, 780572, 1164228, 2190552, 3629704, 4884100, 6760390, 11715210
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2023

Keywords

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({(10 + 4*n)*a(n) + (26 + 8*n)*a(n + 1) + (16 + 4*n)*a(n + 2) + (-10 - n)*a(n + 5) + (-10 - n)*a(n + 6) = 0, a(0) = 1, a(1) = 0, a(2) = 0, a(3) = 0, a(4) = 1, a(5) = 1},a(n),remember):
    map(f, [$0..30]); # Robert Israel, Oct 14 2024
  • PARI
    a(n) = sum(k=0, n\4, binomial(k, n-4*k)*binomial(2*k, k)/(k+1));

Formula

G.f.: A(x) = 2 / (1+sqrt(1-4*x^4*(1+x))).
a(n) = Sum_{k=0..floor(n/4)} binomial(k,n-4*k) * binomial(2*k,k)/(k+1).
(10 + 4*n)*a(n) + (26 + 8*n)*a(n + 1) + (16 + 4*n)*a(n + 2) + (-10 - n)*a(n + 5) + (-10 - n)*a(n + 6) = 0. - Robert Israel, Oct 14 2024

A366558 G.f. A(x) satisfies A(x) = 1 + x + x^4*A(x)^4.

Original entry on oeis.org

1, 1, 0, 0, 1, 4, 6, 4, 5, 28, 84, 140, 162, 304, 1018, 2644, 4760, 7364, 15540, 42680, 102059, 195904, 356542, 782880, 1950844, 4467288, 9011156, 17960676, 39984254, 94642292, 212395260, 444063984, 931300500, 2082762572, 4796413292, 10681800072, 22892593021
Offset: 0

Views

Author

Seiichi Manyama, Oct 13 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(3*k+1, n-4*k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(3*k+1,n-4*k) * binomial(4*k,k)/(3*k+1).
a(n) = A366595(n) + A366595(n-1).

A366556 G.f. A(x) satisfies A(x) = 1 + x + x^4*A(x)^3.

Original entry on oeis.org

1, 1, 0, 0, 1, 3, 3, 1, 3, 15, 30, 30, 27, 87, 252, 420, 475, 747, 2064, 4632, 7203, 9933, 19635, 47025, 92013, 144745, 237510, 498498, 1073817, 1969131, 3267411, 5977881, 12462579, 25035747, 45090936, 79414344, 153115299, 311198457, 600883569, 1090988379, 2012793705
Offset: 0

Views

Author

Seiichi Manyama, Oct 13 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(2*k+1, n-4*k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(2*k+1,n-4*k) * binomial(3*k,k)/(2*k+1).
a(n) = A366592(n) + A366592(n-1).
Showing 1-3 of 3 results.