cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A366588 G.f. A(x) satisfies A(x) = 1 + x^3*(1+x)*A(x)^2.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 2, 4, 2, 5, 15, 15, 19, 56, 84, 98, 224, 420, 552, 1002, 2022, 3069, 4983, 9801, 16577, 26455, 49049, 87945, 144287, 255112, 465244, 792012, 1369862, 2482714, 4348838, 7509580, 13439724, 23911044, 41643744, 73832632, 132039816, 232391394
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2023

Keywords

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({(4*n + 8)*a(n) + (22 + 8*n)*a(n + 1) + (14 + 4*n)*a(n + 2) + (-8 - n)*a(n + 4) + (-8 - n)*a(n + 5) = 0,a(0)=1,a(1)=0,a(2)=0,a(3)=1,a(4)=1}, a(n),remember):
    map(f, [$0..30]); # Robert Israel, Oct 14 2024
  • PARI
    a(n) = sum(k=0, n\3, binomial(k, n-3*k)*binomial(2*k, k)/(k+1));

Formula

G.f.: A(x) = 2 / (1+sqrt(1-4*x^3*(1+x))).
a(n) = Sum_{k=0..floor(n/3)} binomial(k,n-3*k) * binomial(2*k,k)/(k+1).
(4*n + 8)*a(n) + (22 + 8*n)*a(n + 1) + (14 + 4*n)*a(n + 2) + (-8 - n)*a(n + 4) + (-8 - n)*a(n + 5) = 0. - Robert Israel, Oct 14 2024

A366554 G.f. A(x) satisfies A(x) = 1 + x + x^4*A(x)^2.

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 1, 0, 2, 6, 6, 2, 5, 20, 30, 20, 19, 70, 140, 140, 112, 266, 630, 840, 762, 1176, 2814, 4620, 5049, 6204, 12936, 24156, 31460, 36894, 63492, 123552, 185471, 228800, 338910, 634920, 1050686, 1411410, 1944800, 3354780, 5820256, 8513804, 11644490
Offset: 0

Views

Author

Seiichi Manyama, Oct 13 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(k+1, n-4*k)*binomial(2*k, k)/(k+1));

Formula

G.f.: A(x) = 2*(1+x) / (1+sqrt(1-4*x^4*(1+x))).
a(n) = Sum_{k=0..floor(n/4)} binomial(k+1,n-4*k) * binomial(2*k,k)/(k+1).
a(n) = A366589(n) + A366589(n-1).

A366595 G.f. A(x) satisfies A(x) = 1 + x^4*(1+x)^3*A(x)^4.

Original entry on oeis.org

1, 0, 0, 0, 1, 3, 3, 1, 4, 24, 60, 80, 82, 222, 796, 1848, 2912, 4452, 11088, 31592, 70467, 125437, 231105, 551775, 1399069, 3068219, 5942937, 12017739, 27966515, 66675777, 145719483, 298344501, 632955999, 1449806573, 3346606719, 7335193353, 15557399668
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(3*k, n-4*k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(3*k,n-4*k) * binomial(4*k,k)/(3*k+1).

A376546 G.f. A(x) satisfies A(x) = 1 + x^4*(1+x)*A(x)^4.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 0, 4, 8, 4, 0, 22, 66, 66, 22, 140, 560, 840, 560, 1109, 4845, 9690, 9690, 11929, 43473, 106260, 141680, 160080, 419244, 1137304, 1883700, 2304432, 4496076, 12157236, 23614812, 32813500, 53821332, 132821856, 285795696, 451409380
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(k, n-4*k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(k,n-4*k) * binomial(4*k,k)/(3*k+1).

A375691 G.f. A(x) satisfies A(x) = 1 + x^4*(1+x)*A(x)^3.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 0, 3, 6, 3, 0, 12, 36, 36, 12, 55, 220, 330, 220, 328, 1365, 2730, 2730, 2793, 8841, 21420, 28560, 29172, 62832, 164220, 271320, 314583, 508896, 1265628, 2430480, 3275085, 4642803, 10091664, 21066804, 32555028, 45388200, 85102875
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(k, n-4*k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(k,n-4*k) * binomial(3*k,k)/(2*k+1).
Showing 1-5 of 5 results.