cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A366589 G.f. A(x) satisfies A(x) = 1 + x^4*(1+x)*A(x)^2.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 0, 2, 4, 2, 0, 5, 15, 15, 5, 14, 56, 84, 56, 56, 210, 420, 420, 342, 834, 1980, 2640, 2409, 3795, 9141, 15015, 16445, 20449, 43043, 80509, 104962, 123838, 215072, 419848, 630838, 780572, 1164228, 2190552, 3629704, 4884100, 6760390, 11715210
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2023

Keywords

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({(10 + 4*n)*a(n) + (26 + 8*n)*a(n + 1) + (16 + 4*n)*a(n + 2) + (-10 - n)*a(n + 5) + (-10 - n)*a(n + 6) = 0, a(0) = 1, a(1) = 0, a(2) = 0, a(3) = 0, a(4) = 1, a(5) = 1},a(n),remember):
    map(f, [$0..30]); # Robert Israel, Oct 14 2024
  • PARI
    a(n) = sum(k=0, n\4, binomial(k, n-4*k)*binomial(2*k, k)/(k+1));

Formula

G.f.: A(x) = 2 / (1+sqrt(1-4*x^4*(1+x))).
a(n) = Sum_{k=0..floor(n/4)} binomial(k,n-4*k) * binomial(2*k,k)/(k+1).
(10 + 4*n)*a(n) + (26 + 8*n)*a(n + 1) + (16 + 4*n)*a(n + 2) + (-10 - n)*a(n + 5) + (-10 - n)*a(n + 6) = 0. - Robert Israel, Oct 14 2024

A346503 G.f. A(x) satisfies A(x) = 1 + x^3 * A(x)^2 / (1 - x).

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 3, 5, 7, 14, 26, 43, 79, 148, 264, 483, 903, 1664, 3080, 5771, 10795, 20209, 38059, 71799, 135569, 256762, 487310, 925981, 1762841, 3361897, 6419595, 12275301, 23505143, 45061424, 86485016, 166176499, 319630115, 615387675, 1185940209, 2287527119, 4416083429
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; A[] = 0; Do[A[x] = 1 + x^3 A[x]^2/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[1] = a[2] = 0; a[n_] := a[n] = a[n - 1] + Sum[a[k] a[n - k - 3], {k, 0, n - 3}]; Table[a[n], {n, 0, 40}]

Formula

a(0) = 1, a(1) = a(2) = 0; a(n) = a(n-1) + Sum_{k=0..n-3} a(k) * a(n-k-3).
a(n) ~ 2^(n+1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jul 30 2021
From Seiichi Manyama, Sep 26 2024: (Start)
G.f.: 2/(1 + sqrt(1 - 4*x^3/(1 - x))).
a(n) = Sum_{k=0..floor(n/3)} binomial(2*k,k) * binomial(n-2*k-1,n-3*k) / (k+1). (End)

A366594 G.f. A(x) satisfies A(x) = 1 + x^3*(1+x)^3*A(x)^4.

Original entry on oeis.org

1, 0, 0, 1, 3, 3, 5, 24, 60, 102, 258, 816, 1992, 4452, 12012, 33617, 84627, 212823, 577361, 1561077, 4063059, 10715009, 29052015, 78235107, 208358693, 560561391, 1522609569, 4120277283, 11129752269, 30240233739, 82441619605, 224488878600, 611770878012
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(3*k, n-3*k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(3*k,n-3*k) * binomial(4*k,k)/(3*k+1).

A376547 G.f. A(x) satisfies A(x) = 1 + x^3*(1+x)*A(x)^3.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 3, 6, 3, 12, 36, 36, 67, 220, 330, 493, 1420, 2730, 4158, 9933, 21693, 36312, 75684, 171360, 316011, 617424, 1374156, 2723667, 5256237, 11303028, 23362779, 45734304, 95506488, 200821140, 401891490, 825565455, 1739179533, 3549322296
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(k, n-3*k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(k,n-3*k) * binomial(3*k,k)/(2*k+1).
Showing 1-4 of 4 results.