cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366589 G.f. A(x) satisfies A(x) = 1 + x^4*(1+x)*A(x)^2.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 0, 0, 2, 4, 2, 0, 5, 15, 15, 5, 14, 56, 84, 56, 56, 210, 420, 420, 342, 834, 1980, 2640, 2409, 3795, 9141, 15015, 16445, 20449, 43043, 80509, 104962, 123838, 215072, 419848, 630838, 780572, 1164228, 2190552, 3629704, 4884100, 6760390, 11715210
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2023

Keywords

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({(10 + 4*n)*a(n) + (26 + 8*n)*a(n + 1) + (16 + 4*n)*a(n + 2) + (-10 - n)*a(n + 5) + (-10 - n)*a(n + 6) = 0, a(0) = 1, a(1) = 0, a(2) = 0, a(3) = 0, a(4) = 1, a(5) = 1},a(n),remember):
    map(f, [$0..30]); # Robert Israel, Oct 14 2024
  • PARI
    a(n) = sum(k=0, n\4, binomial(k, n-4*k)*binomial(2*k, k)/(k+1));

Formula

G.f.: A(x) = 2 / (1+sqrt(1-4*x^4*(1+x))).
a(n) = Sum_{k=0..floor(n/4)} binomial(k,n-4*k) * binomial(2*k,k)/(k+1).
(10 + 4*n)*a(n) + (26 + 8*n)*a(n + 1) + (16 + 4*n)*a(n + 2) + (-10 - n)*a(n + 5) + (-10 - n)*a(n + 6) = 0. - Robert Israel, Oct 14 2024