cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366596 Repdigit numbers that are divisible by 7.

Original entry on oeis.org

0, 7, 77, 777, 7777, 77777, 111111, 222222, 333333, 444444, 555555, 666666, 777777, 888888, 999999, 7777777, 77777777, 777777777, 7777777777, 77777777777, 111111111111, 222222222222, 333333333333, 444444444444, 555555555555, 666666666666, 777777777777
Offset: 1

Views

Author

Kritsada Moomuang, Oct 14 2023

Keywords

Comments

7 divides a repdigit iff it consists of only digit 7, or has length 6*k (for any digit).
Repdigit remainders A010785(k) mod 7 have period 54. - Karl-Heinz Hofmann, Dec 04 2023

Crossrefs

Intersection of A008589 and A010785.
Cf. A002281 (a subsequence).
Cf. A305322 (divisor 3), A002279 (divisor 5), A083118 (the impossible divisors).

Programs

  • PARI
    r(n) = 10^((n+8)\9)\9*((n-1)%9+1); \\ A010785
    lista(nn) = select(x->!(x%7), vector(nn, k, r(k-1))); \\ Michel Marcus, Oct 26 2023
    
  • Python
    def A366596(n):
        digitlen, digit = (n+12)//14*6, (n+12)%14-4
        if digit < 1: digitlen += digit - 1; digit = 7
        return 10**digitlen // 9 * digit # Karl-Heinz Hofmann, Dec 04 2023

Formula

From Karl-Heinz Hofmann, Dec 04 2023: (Start)
a(n) = A010785(floor((n-2)/14)*54 + ((n-2) mod 14) + 41), for (n-2) mod 14 > 4.
a(n) = (10^(6*floor((n-2)/14) + 6)-1)/9*(((n-2) mod 14)-4), for (n-2) mod 14 > 4.
a(n) = A010785(floor((n-2)/14)*54 + ((n-2) mod 14)*9 + 7), for (n-2) mod 14 <= 4.
a(n) = (10^(6*floor((n-2)/14) + 1 + ((n-2) mod 14))-1)/9*7, for (n-2) mod 14 <= 4.
(End)