A366596 Repdigit numbers that are divisible by 7.
0, 7, 77, 777, 7777, 77777, 111111, 222222, 333333, 444444, 555555, 666666, 777777, 888888, 999999, 7777777, 77777777, 777777777, 7777777777, 77777777777, 111111111111, 222222222222, 333333333333, 444444444444, 555555555555, 666666666666, 777777777777
Offset: 1
Links
- Karl-Heinz Hofmann, Table of n, a(n) for n = 1..2329
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,1000001,0,0,0,0,0,0,0,0,0,0,0,0,0,-1000000).
Crossrefs
Programs
-
PARI
r(n) = 10^((n+8)\9)\9*((n-1)%9+1); \\ A010785 lista(nn) = select(x->!(x%7), vector(nn, k, r(k-1))); \\ Michel Marcus, Oct 26 2023
-
Python
def A366596(n): digitlen, digit = (n+12)//14*6, (n+12)%14-4 if digit < 1: digitlen += digit - 1; digit = 7 return 10**digitlen // 9 * digit # Karl-Heinz Hofmann, Dec 04 2023
Formula
From Karl-Heinz Hofmann, Dec 04 2023: (Start)
a(n) = A010785(floor((n-2)/14)*54 + ((n-2) mod 14) + 41), for (n-2) mod 14 > 4.
a(n) = (10^(6*floor((n-2)/14) + 6)-1)/9*(((n-2) mod 14)-4), for (n-2) mod 14 > 4.
a(n) = A010785(floor((n-2)/14)*54 + ((n-2) mod 14)*9 + 7), for (n-2) mod 14 <= 4.
a(n) = (10^(6*floor((n-2)/14) + 1 + ((n-2) mod 14))-1)/9*7, for (n-2) mod 14 <= 4.
(End)
Comments