cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A366711 a(n) = phi(12^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

10, 120, 1560, 13440, 226200, 2021760, 32518360, 274391040, 4534807680, 51953616000, 646094232960, 4662793175040, 97266341877120, 1070382142166400, 13666309113600000, 109897747141754880, 2016918439151095000, 17518491733377024000, 290436363064202660760
Offset: 1

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), A295503 (k=10), A366685 (k=11), this sequence (k=12).

Programs

  • Mathematica
    EulerPhi[12^Range[30] - 1]
  • PARI
    {a(n) = eulerphi(12^n-1)}

A366720 Largest prime factor of 12^n+1.

Original entry on oeis.org

2, 13, 29, 19, 233, 19141, 20593, 13063, 260753, 1801, 85403261, 57154490053, 2227777, 222379, 13156924369, 35671, 1200913648289, 66900193189411, 122138321401, 905265296671, 67657441, 1885339, 68368660537, 49489630860836437, 592734049, 438472201
Offset: 0

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[12^n + 1][[-1, 1]], {n, 0, 20}]

Formula

a(n) = A006530(A178248(n)). - Paul F. Marrero Romero, Dec 07 2023

A366717 Smallest prime dividing 12^n - 1.

Original entry on oeis.org

11, 11, 11, 5, 11, 7, 11, 5, 11, 11, 11, 5, 11, 11, 11, 5, 11, 7, 11, 5, 11, 11, 11, 5, 11, 11, 11, 5, 11, 7, 11, 5, 11, 11, 11, 5, 11, 11, 11, 5, 11, 7, 11, 5, 11, 11, 11, 5, 11, 11, 11, 5, 11, 7, 11, 5, 11, 11, 11, 5, 11, 11, 11, 5, 11, 7, 11, 5, 11, 11, 11
Offset: 1

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Comments

Periodic with period 12, repeat of 11, 11, 11, 5, 11, 7, 11, 5, 11, 11, 11, 5.

Crossrefs

Programs

Formula

a(n) = A020639(A024140(n)). - Paul F. Marrero Romero, Oct 25 2023
Showing 1-3 of 3 results.