cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A366714 Number of divisors of 12^n+1.

Original entry on oeis.org

2, 2, 4, 8, 4, 4, 8, 8, 8, 32, 12, 4, 16, 24, 16, 128, 4, 8, 32, 16, 64, 384, 64, 16, 64, 64, 32, 1024, 8, 8, 48, 8, 4, 512, 16, 32, 128, 16, 32, 1536, 16, 32, 64, 32, 16, 4096, 8, 32, 32, 32, 512, 512, 32, 32, 1024, 128, 512, 1536, 192, 64, 1024, 32, 64
Offset: 0

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Examples

			a(4)=4 because 12^4+1 has divisors {1, 89, 233, 20737}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](12^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0, 12^Range[0, 70] + 1] (* Paolo Xausa, Apr 20 2025 *)
  • PARI
    a(n) = numdiv(12^n+1);

Formula

a(n) = sigma0(12^n+1) = A000005(A178248(n)).

A366716 a(n) = phi(12^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 12, 112, 1296, 20416, 229680, 2306304, 32916240, 400515072, 3863116800, 47825825600, 685853880624, 8732596764672, 97509650382144, 990242755633152, 11148606564480000, 184883057981234176, 2047145911595946000, 20281543142263603200, 294779525244632305920
Offset: 0

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[12^Range[0,19] + 1] (* Paul F. Marrero Romero, Oct 27 2023 *)
  • PARI
    {a(n) = eulerphi(12^n+1)}

Formula

a(n) = A000010(A178248(n)). - Paul F. Marrero Romero, Oct 27 2023

A366715 Sum of the divisors of 12^n+1.

Original entry on oeis.org

3, 14, 180, 2240, 21060, 267988, 3706920, 38773952, 459970056, 6692483840, 79425033660, 800162860756, 9101898907920, 117326869641600, 1596198064568400, 20655000929239040, 184885459808838660, 2390210102271311936, 33504016991491136160, 344201347103878781440
Offset: 0

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Examples

			a(4)=21060 because 12^4+1 has divisors {1, 89, 233, 20737}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](12^n+1):
    seq(a(n), n=0..100);

Formula

a(n) = sigma(12^n+1) = A000203(A178248(n)).

A366719 Smallest prime dividing 12^n + 1.

Original entry on oeis.org

2, 13, 5, 7, 89, 13, 5, 13, 17, 7, 5, 13, 89, 13, 5, 7, 153953, 13, 5, 13, 41, 7, 5, 13, 17, 13, 5, 7, 89, 13, 5, 13, 769, 7, 5, 13, 89, 13, 5, 7, 17, 13, 5, 13, 89, 7, 5, 13, 7489, 13, 5, 7, 89, 13, 5, 13, 17, 7, 5, 13, 41, 13, 5, 7, 36097, 13, 5, 13, 89, 7
Offset: 0

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

Formula

a(n) = A020639(A178248(n)). - Paul F. Marrero Romero, Oct 25 2023

A366713 Number of prime factors of 12^n + 1 (counted with multiplicity).

Original entry on oeis.org

1, 1, 2, 3, 2, 2, 3, 3, 3, 5, 4, 2, 4, 5, 4, 7, 2, 3, 5, 4, 6, 9, 6, 4, 6, 6, 5, 10, 3, 3, 6, 3, 2, 9, 4, 5, 7, 4, 5, 11, 4, 5, 6, 5, 4, 12, 3, 5, 5, 5, 10, 9, 5, 5, 10, 7, 9, 11, 8, 6, 10, 5, 6, 15, 5, 9, 11, 4, 5, 12, 10, 3, 10, 5, 8, 17, 5, 6, 9, 4, 6, 15
Offset: 0

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeOmega[12^Range[70]+1]
  • PARI
    a(n)=bigomega(12^n+1)

Formula

a(n) = bigomega(12^n+1) = A001222(A178248(n)).

A366718 Largest prime factor of 12^n - 1.

Original entry on oeis.org

11, 13, 157, 29, 22621, 157, 4943, 233, 80749, 22621, 266981089, 20593, 20369233, 13063, 22621, 260753, 74876782031, 80749, 29043636306420266077, 85403261, 8177824843189, 57154490053, 321218438243, 2227777, 12629757106815551, 20369233, 86769286104133
Offset: 1

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Magma
    [Maximum(PrimeDivisors(12^n-1)): n in [1..40]];
  • Mathematica
    Table[FactorInteger[12^n - 1][[-1, 1]], {n, 40}]

Formula

a(n) = A006530(A024140(n)).
Showing 1-6 of 6 results.