cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A366712 Number of distinct prime divisors of 12^n + 1.

Original entry on oeis.org

1, 1, 2, 3, 2, 2, 3, 3, 3, 5, 3, 2, 4, 4, 4, 7, 2, 3, 5, 4, 6, 8, 6, 4, 6, 6, 5, 10, 3, 3, 5, 3, 2, 9, 4, 5, 7, 4, 5, 10, 4, 5, 6, 5, 4, 12, 3, 5, 5, 5, 8, 9, 5, 5, 10, 7, 9, 10, 7, 6, 10, 5, 6, 14, 5, 8, 11, 4, 5, 12, 9, 3, 10, 5, 8, 17, 5, 6, 9, 4, 6, 15, 3
Offset: 0

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • PARI
    for(n = 0, 100, print1(omega(12^n + 1), ", "))

Formula

a(n) = omega(12^n+1) = A001221(A178248(n)).

A366716 a(n) = phi(12^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 12, 112, 1296, 20416, 229680, 2306304, 32916240, 400515072, 3863116800, 47825825600, 685853880624, 8732596764672, 97509650382144, 990242755633152, 11148606564480000, 184883057981234176, 2047145911595946000, 20281543142263603200, 294779525244632305920
Offset: 0

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[12^Range[0,19] + 1] (* Paul F. Marrero Romero, Oct 27 2023 *)
  • PARI
    {a(n) = eulerphi(12^n+1)}

Formula

a(n) = A000010(A178248(n)). - Paul F. Marrero Romero, Oct 27 2023

A366715 Sum of the divisors of 12^n+1.

Original entry on oeis.org

3, 14, 180, 2240, 21060, 267988, 3706920, 38773952, 459970056, 6692483840, 79425033660, 800162860756, 9101898907920, 117326869641600, 1596198064568400, 20655000929239040, 184885459808838660, 2390210102271311936, 33504016991491136160, 344201347103878781440
Offset: 0

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Examples

			a(4)=21060 because 12^4+1 has divisors {1, 89, 233, 20737}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](12^n+1):
    seq(a(n), n=0..100);

Formula

a(n) = sigma(12^n+1) = A000203(A178248(n)).

A366688 Number of divisors of 11^n+1.

Original entry on oeis.org

2, 6, 4, 18, 4, 12, 16, 12, 8, 48, 8, 96, 16, 48, 32, 144, 8, 48, 32, 96, 16, 72, 16, 96, 128, 48, 8, 240, 64, 48, 64, 96, 16, 4608, 64, 1152, 128, 24, 16, 1152, 32, 48, 512, 24, 64, 3072, 64, 96, 32, 192, 64, 1152, 8, 96, 512, 6144, 128, 2304, 64, 96, 256, 48
Offset: 0

Views

Author

Sean A. Irvine, Oct 16 2023

Keywords

Examples

			a(4)=4 because 11^4+1 has divisors {1, 2, 7321, 14642}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](11^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0,11^Range[0,70]+1] (* Harvey P. Dale, Mar 17 2025 *)
  • PARI
    a(n) = numdiv(11^n+1);

Formula

a(n) = sigma0(11^n+1) = A000005(A034524(n)).

A366606 Number of divisors of 4^n+1.

Original entry on oeis.org

2, 2, 2, 4, 2, 6, 4, 8, 2, 16, 4, 8, 8, 16, 4, 48, 4, 16, 16, 16, 4, 64, 8, 32, 8, 64, 8, 64, 8, 8, 16, 32, 4, 64, 12, 96, 32, 32, 16, 768, 8, 32, 32, 32, 16, 1536, 4, 16, 8, 64, 64, 512, 4, 16, 64, 96, 32, 256, 8, 128, 64, 64, 16, 1024, 4, 768, 128, 64, 16
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=4 because 4^3+1 has divisors {1, 5, 13, 65}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](4^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0,4^Range[0,100]+1] (* Paolo Xausa, Oct 14 2023 *)
  • PARI
    a(n) = numdiv(4^n+1);
    
  • Python
    from sympy import divisor_count
    def A366606(n): return divisor_count((1<<(n<<1))+1) # Chai Wah Wu, Oct 14 2023

Formula

a(n) = sigma0(4^n+1) = A000005(A052539(n)).
a(n) = A046798(2*n). - Max Alekseyev, Jan 08 2024

A366719 Smallest prime dividing 12^n + 1.

Original entry on oeis.org

2, 13, 5, 7, 89, 13, 5, 13, 17, 7, 5, 13, 89, 13, 5, 7, 153953, 13, 5, 13, 41, 7, 5, 13, 17, 13, 5, 7, 89, 13, 5, 13, 769, 7, 5, 13, 89, 13, 5, 7, 17, 13, 5, 13, 89, 7, 5, 13, 7489, 13, 5, 7, 89, 13, 5, 13, 17, 7, 5, 13, 41, 13, 5, 7, 36097, 13, 5, 13, 89, 7
Offset: 0

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

Formula

a(n) = A020639(A178248(n)). - Paul F. Marrero Romero, Oct 25 2023

A366616 Number of divisors of 5^n+1.

Original entry on oeis.org

2, 4, 4, 12, 4, 8, 8, 16, 8, 32, 16, 32, 8, 16, 8, 96, 8, 16, 32, 32, 16, 576, 16, 16, 16, 32, 24, 320, 8, 16, 128, 32, 16, 384, 64, 128, 64, 32, 16, 192, 32, 64, 64, 64, 8, 512, 8, 32, 32, 128, 128, 768, 32, 32, 64, 128, 128, 384, 8, 64, 64, 64, 16, 24576, 16
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=12 because 5^3+1 has divisors {1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](5^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0, 5^Range[0, 70] + 1] (* Paolo Xausa, Apr 20 2025 *)
  • PARI
    a(n) = numdiv(5^n+1);

Formula

a(n) = sigma0(5^n+1) = A000005(A034474(n)).

A366628 Number of divisors of 6^n+1.

Original entry on oeis.org

2, 2, 2, 4, 2, 8, 8, 12, 4, 8, 8, 4, 4, 16, 8, 32, 8, 8, 64, 8, 8, 48, 16, 8, 16, 16, 16, 32, 32, 16, 512, 4, 8, 64, 8, 1536, 32, 16, 8, 512, 32, 16, 128, 4, 8, 128, 32, 4, 128, 64, 64, 256, 16, 32, 1024, 192, 64, 128, 8, 4, 64, 8, 4, 768, 8, 256, 2048, 32, 32
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=4 because 6^3+1 has divisors {1, 7, 31, 217}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](6^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0, 6^Range[0, 70] + 1] (* Paolo Xausa, Apr 19 2025 *)
  • PARI
    a(n) = numdiv(6^n+1);

Formula

a(n) = sigma0(6^n+1) = A000005(A062394(n)).

A366637 Number of divisors of 7^n+1.

Original entry on oeis.org

2, 4, 6, 8, 4, 16, 24, 16, 8, 16, 32, 16, 32, 16, 12, 64, 8, 8, 48, 16, 16, 128, 48, 8, 16, 32, 24, 32, 64, 8, 512, 32, 16, 128, 48, 1024, 256, 16, 12, 256, 64, 64, 96, 512, 32, 2048, 96, 8, 64, 2048, 640, 128, 32, 64, 384, 3072, 256, 256, 96, 64, 512, 8, 48
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(4)=4 because 7^4+1 has divisors {1, 2, 1201, 2402}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](7^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0, 7^Range[0, 62] + 1] (* Paul F. Marrero Romero, Oct 16 2023 *)
  • PARI
    a(n) = numdiv(7^n+1);

Formula

a(n) = sigma0(7^n+1) = A000005(A034491(n)).

A366656 Number of divisors of 8^n+1.

Original entry on oeis.org

2, 3, 4, 8, 4, 12, 16, 12, 8, 20, 48, 24, 16, 12, 64, 64, 8, 48, 64, 24, 16, 64, 64, 24, 32, 96, 768, 192, 32, 24, 1536, 24, 8, 256, 512, 1536, 64, 96, 256, 64, 64, 96, 1024, 48, 128, 1280, 256, 96, 128, 96, 8192, 1024, 32, 48, 1024, 2304, 256, 192, 256, 192
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(4)=4 because 8^4+1 has divisors {1, 17, 241, 4097}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](8^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0, 8^Range[0,59] + 1] (* Paul F. Marrero Romero, Nov 12 2023 *)
  • PARI
    a(n) = numdiv(8^n+1);

Formula

a(n) = sigma0(8^n+1) = A000005(A062395(n)).
a(n) = A046798(3*n). - Max Alekseyev, Jan 09 2024
Showing 1-10 of 13 results. Next