A366606 Number of divisors of 4^n+1.
2, 2, 2, 4, 2, 6, 4, 8, 2, 16, 4, 8, 8, 16, 4, 48, 4, 16, 16, 16, 4, 64, 8, 32, 8, 64, 8, 64, 8, 8, 16, 32, 4, 64, 12, 96, 32, 32, 16, 768, 8, 32, 32, 32, 16, 1536, 4, 16, 8, 64, 64, 512, 4, 16, 64, 96, 32, 256, 8, 128, 64, 64, 16, 1024, 4, 768, 128, 64, 16
Offset: 0
Keywords
Examples
a(3)=4 because 4^3+1 has divisors {1, 5, 13, 65}.
Links
- Max Alekseyev, Table of n, a(n) for n = 0..583
Crossrefs
Programs
-
Maple
a:=n->numtheory[tau](4^n+1): seq(a(n), n=0..100);
-
Mathematica
DivisorSigma[0,4^Range[0,100]+1] (* Paolo Xausa, Oct 14 2023 *)
-
PARI
a(n) = numdiv(4^n+1);
-
Python
from sympy import divisor_count def A366606(n): return divisor_count((1<<(n<<1))+1) # Chai Wah Wu, Oct 14 2023
Formula
a(n) = A046798(2*n). - Max Alekseyev, Jan 08 2024