cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A366608 a(n) = phi(4^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 4, 16, 48, 256, 800, 3840, 12544, 65536, 186624, 986880, 3345408, 16515072, 52306176, 252645120, 760320000, 4288266240, 13628740608, 64258375680, 218462552064, 1095233372160, 3105655160832, 16510446886912, 56000724240384, 280012271910912, 869940000000000
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[4^Range[0,30]+1] (* Paolo Xausa, Oct 14 2023 *)
  • PARI
    {a(n) = eulerphi(4^n+1)}
    
  • Python
    from sympy import totient
    def A366608(n): return totient((1<<(n<<1))+1) # Chai Wah Wu, Oct 14 2023

Formula

a(n) = A053285(2*n). - Max Alekseyev, Jan 08 2024

A366630 a(n) = phi(6^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 6, 36, 180, 1296, 6000, 41472, 230496, 1580800, 8359200, 58579200, 310968900, 2175102720, 10971642240, 76065091200, 351048600000, 2811459796992, 14508487949472, 88870766837760, 522016066337712, 3564233663616000, 17479898551382400, 128060205344805888
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[6^Range[0, 22] + 1] (* Paul F. Marrero Romero, Oct 17 2023 *)
  • PARI
    {a(n) = eulerphi(6^n+1)}

Formula

a(n) = A000010(A062394(n)). - Paul F. Marrero Romero, Oct 17 2023

A366667 a(n) = phi(9^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 4, 40, 288, 3072, 23600, 259200, 1847104, 21523360, 152845056, 1700870400, 12550120000, 130459631616, 997562438080, 11159367815680, 81159501312000, 926510094425920, 6670865700716544, 73205598106368000, 540340585126398016, 5691215305506816000
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[9^Range[0, 20] + 1] (* Paul F. Marrero Romero, Nov 04 2023 *)
  • PARI
    {a(n) = eulerphi(9^n+1)}

Formula

a(n) = A000010(A062396(n)). - Paul F. Marrero Romero, Nov 04 2023
a(n) = A366579(2*n). - Max Alekseyev, Jan 08 2024

A366618 a(n) = phi(5^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 2, 12, 36, 312, 1040, 7200, 25088, 183808, 557928, 4396800, 15333120, 121680000, 406812744, 2817007200, 8558784000, 76264519680, 254230063200, 1710194342400, 6349120596480, 47334145996800, 127169887444992, 1088029470747648, 3889097389599864
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[5^Range[0,30]+1] (* Harvey P. Dale, Jun 07 2025 *)
  • PARI
    {a(n) = eulerphi(5^n+1)}

A366638 Sum of the divisors of 7^n+1.

Original entry on oeis.org

3, 15, 93, 660, 3606, 34560, 236964, 1559520, 9155916, 77423280, 530807472, 3868683120, 21224771760, 185094572580, 1261494915594, 9988783073280, 49990612274316, 436182213726030, 3279858902194056, 21372989348391720, 122709716651985624, 1082323574100172800
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(4)=3606 because 7^4+1 has divisors {1, 2, 1201, 2402}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](7^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[1, 7^Range[0, 21] + 1] (* Paul F. Marrero Romero, Oct 16 2023 *)

Formula

a(n) = sigma(7^n+1) = A000203(A034491(n)).

A366658 a(n) = phi(8^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 6, 48, 324, 3840, 19800, 186624, 1365336, 16515072, 84768120, 760320000, 5632621632, 64258375680, 366369658200, 3105655160832, 20140520400000, 280012271910912, 1495522910085120, 12824556668190720, 95907982079387520, 1080582572777472000, 5688765822212629632
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[8^Range[0, 21] + 1] (* Paul F. Marrero Romero, Oct 17 2023 *)
  • PARI
    {a(n) = eulerphi(8^n+1)}
    
  • Python
    from sympy import totient
    def A366658(n): return totient((1<<3*n)+1) # Chai Wah Wu, Oct 15 2023

Formula

a(n) = A000010(A062395(n)). - Paul F. Marrero Romero, Nov 06 2023
a(n) = A053285(3*n). - Max Alekseyev, Jan 09 2024

A366636 Number of distinct prime divisors of 7^n + 1.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 4, 3, 3, 3, 4, 3, 5, 3, 3, 5, 3, 2, 5, 3, 4, 6, 5, 2, 4, 4, 4, 4, 6, 2, 8, 4, 4, 6, 5, 9, 8, 3, 3, 7, 6, 5, 6, 8, 5, 10, 6, 2, 6, 10, 8, 6, 5, 5, 8, 10, 8, 7, 6, 5, 9, 2, 5, 12, 4, 7, 11, 4, 5, 6, 8, 3, 9, 4, 3, 9, 7, 10, 8, 5, 6, 8, 5, 3, 12
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeNu[7^Range[0,84] + 1] (* Paul F. Marrero Romero, Nov 11 2023 *)
  • PARI
    for(n = 0, 100, print1(omega(7^n + 1), ", "))

Formula

a(n) = omega(7^n+1) = A001221(A034491(n)).

A366637 Number of divisors of 7^n+1.

Original entry on oeis.org

2, 4, 6, 8, 4, 16, 24, 16, 8, 16, 32, 16, 32, 16, 12, 64, 8, 8, 48, 16, 16, 128, 48, 8, 16, 32, 24, 32, 64, 8, 512, 32, 16, 128, 48, 1024, 256, 16, 12, 256, 64, 64, 96, 512, 32, 2048, 96, 8, 64, 2048, 640, 128, 32, 64, 384, 3072, 256, 256, 96, 64, 512, 8, 48
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Examples

			a(4)=4 because 7^4+1 has divisors {1, 2, 1201, 2402}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](7^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0, 7^Range[0, 62] + 1] (* Paul F. Marrero Romero, Oct 16 2023 *)
  • PARI
    a(n) = numdiv(7^n+1);

Formula

a(n) = sigma0(7^n+1) = A000005(A034491(n)).

A366669 a(n) = phi(10^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 10, 100, 720, 9792, 90900, 990000, 9090900, 94117632, 681410880, 9897840000, 86925373920, 979102080000, 9080325951840, 95255567232000, 712493107200000, 9926748531589120, 90004044661864320, 989999010000000000, 9090909090909090900, 97910150554895155200
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[10^Range[0,20] + 1] (* Paul F. Marrero Romero, Nov 10 2023 *)
  • PARI
    {a(n) = eulerphi(10^n+1)}

Formula

a(n) = A000010(A062397(n)). - Paul F. Marrero Romero, Nov 10 2023
Showing 1-9 of 9 results.