cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366738 Number of semi-sums of integer partitions of n.

Original entry on oeis.org

0, 0, 1, 2, 5, 9, 17, 28, 46, 72, 111, 166, 243, 352, 500, 704, 973, 1341, 1819, 2459, 3277, 4363, 5735, 7529, 9779, 12685, 16301, 20929, 26638, 33878, 42778, 53942, 67583, 84600, 105270, 130853, 161835, 199896, 245788, 301890, 369208, 451046, 549002, 667370
Offset: 0

Views

Author

Gus Wiseman, Nov 06 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The partitions of 6 and their a(6) = 17 semi-sums:
       (6) ->
      (51) -> 6
      (42) -> 6
     (411) -> 2,5
      (33) -> 6
     (321) -> 3,4,5
    (3111) -> 2,4
     (222) -> 4
    (2211) -> 2,3,4
   (21111) -> 2,3
  (111111) -> 2
		

Crossrefs

The non-binary version is A304792.
The strict non-binary version is A365925.
For prime indices instead of partitions we have A366739.
The strict case is A366741.
A000041 counts integer partitions, strict A000009.
A001358 lists semiprimes, squarefree A006881, conjugate A065119.
A126796 counts complete partitions, ranks A325781, strict A188431.
A276024 counts positive subset-sums of partitions, strict A284640.
A365924 counts incomplete partitions, ranks A365830, strict A365831.

Programs

  • Mathematica
    Table[Total[Length[Union[Total/@Subsets[#,{2}]]]&/@IntegerPartitions[n]],{n,0,15}]

Extensions

More terms from Alois P. Heinz, Nov 06 2023