A366764 The sum of divisors of n that have no exponent 2 in their prime factorization.
1, 3, 4, 3, 6, 12, 8, 11, 4, 18, 12, 12, 14, 24, 24, 27, 18, 12, 20, 18, 32, 36, 24, 44, 6, 42, 31, 24, 30, 72, 32, 59, 48, 54, 48, 12, 38, 60, 56, 66, 42, 96, 44, 36, 24, 72, 48, 108, 8, 18, 72, 42, 54, 93, 72, 88, 80, 90, 60, 72, 62, 96, 32, 123, 84, 144, 68
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - p^2; f[p_, 1] := p + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, f[i, 1] + 1, (f[i, 1]^(f[i,2] + 1) - 1)/(f[i, 1] - 1) - f[i, 1]^2));}
Formula
Multiplicative with a(p) = p + 1, and a(p^e) = (p^(e+1) - 1)/(p - 1) - p^2 for e >= 2.
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 1/p^(2*s-2) + 1/p^(3*s-3)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 + 1/(p^3-p)) = 1.231291... (A065487).
Comments