A366763 The number of divisors of n that have no exponent 2 in their prime factorization.
1, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 6, 2, 4, 3, 4, 2, 8, 2, 5, 4, 4, 4, 4, 2, 4, 4, 6, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 6, 4, 6, 4, 4, 2, 8, 2, 4, 4, 6, 4, 8, 2, 4, 4, 8, 2, 6, 2, 4, 4, 4, 4, 8, 2, 8, 4, 4, 2, 8, 4, 4, 4
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Vaclav Kotesovec, Graph - the asymptotic ratio (100000 terms)
Programs
-
Mathematica
f[p_, e_] := Max[e, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = vecprod(apply(x -> max(x, 2), factor(n)[, 2]));
Formula
Multiplicative with a(p^e) = max(e, 2);
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^(2*s) + 1/p^(3*s)).
From Vaclav Kotesovec, Apr 20 2025: (Start)
Let f(s) = Product_{p prime} (1 - 1/p^(2*s) + 1/p^(3*s)).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 1/p^2 + 1/p^3) = A330596 = 0.74853525968236356464421504863791060164164034300532440451585279392592558689...,
f'(1) = f(1) * Sum_{p prime} (2*p-3)*log(p)/(p^3-p+1) = f(1) * 0.560697508735949606541137451100554649565120075155278833396722097786365686597...
and gamma is the Euler-Mascheroni constant A001620. (End)
Comments