cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377674 a(n) = phi(n^n + n) where phi is the Euler totient function.

Original entry on oeis.org

1, 2, 8, 96, 1248, 12000, 259200, 5461344, 129140160, 2725643520, 127561104000, 2743415522496, 139778722137600, 2504616361228800, 111747349423990784, 8644660582219776000, 387774574486565683200, 12306643656809728412160, 816897235219321957908480
Offset: 1

Views

Author

Sean A. Irvine, Nov 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := EulerPhi[n^n + n]; Array[a, 20] (* Amiram Eldar, Nov 04 2024 *)
  • PARI
    a(n) = eulerphi(n^n+n);

Formula

a(n) = A000010(A066068(n)).

A366821 a(n) is phi(n^n-1) where phi is the Euler totient function.

Original entry on oeis.org

2, 12, 128, 1400, 30240, 264992, 6635520, 141087744, 5890320000, 114117380608, 4662793175040, 99053063903040, 5470524984113280, 167080949856000000, 9208981628670443520, 413582117375670921216, 29531731481729468006400, 659473218553437863041320
Offset: 2

Views

Author

Sean A. Irvine, Oct 24 2023

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> numtheory[phi](n^n-1):
    seq(a(n), n=2..20);  # Alois P. Heinz, Oct 26 2023
  • Mathematica
    Array[EulerPhi[#^# - 1] &, 18, 2] (* Michael De Vlieger, Oct 24 2023 *)
  • PARI
    a(n) = eulerphi(n^n-1);

Formula

a(n) = A000010(A048861(n)).
Showing 1-2 of 2 results.