cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A366843 Number of integer partitions of n into odd, relatively prime parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 4, 6, 6, 9, 11, 13, 17, 21, 23, 32, 37, 42, 53, 62, 70, 88, 103, 116, 139, 164, 184, 220, 255, 283, 339, 390, 435, 511, 578, 653, 759, 863, 963, 1107, 1259, 1401, 1609, 1814, 2015, 2303, 2589, 2878, 3259, 3648, 4058, 4580, 5119, 5672, 6364
Offset: 0

Views

Author

Gus Wiseman, Oct 28 2023

Keywords

Examples

			The a(1) = 1 through a(8) = 6 partitions:
  (1)  (11)  (111)  (31)    (311)    (51)      (331)      (53)
                    (1111)  (11111)  (3111)    (511)      (71)
                                     (111111)  (31111)    (3311)
                                               (1111111)  (5111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

Allowing even parts gives A000837.
The strict case is A366844, with evens A078374.
The complement is counted by A366852, with evens A018783.
The pairwise coprime version is A366853, with evens A051424.
A000041 counts integer partitions, strict A000009 (also into odds).
A000740 counts relatively prime compositions.
A168532 counts partitions by gcd.
A366842 counts partitions whose odd parts have a common divisor > 1.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||And@@OddQ/@#&&GCD@@#==1&]],{n,0,30}]
  • Python
    from math import gcd
    from sympy.utilities.iterables import partitions
    def A366843(n): return sum(1 for p in partitions(n) if all(d&1 for d in p) and gcd(*p)==1) # Chai Wah Wu, Oct 30 2023

A366844 Number of strict integer partitions of n into odd relatively prime parts.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 0, 2, 1, 2, 1, 2, 2, 3, 3, 5, 4, 4, 5, 6, 7, 8, 8, 9, 11, 12, 12, 15, 16, 15, 19, 23, 23, 26, 28, 30, 34, 37, 38, 44, 48, 48, 56, 62, 63, 72, 77, 82, 92, 96, 102, 116, 124, 128, 142, 155, 162, 178, 191, 200, 222, 236, 246, 276, 291, 303, 334
Offset: 0

Views

Author

Gus Wiseman, Oct 29 2023

Keywords

Examples

			The a(n) partitions for n = 1, 8, 14, 17, 16, 20, 21:
  (1)  (5,3)  (9,5)   (9,5,3)   (9,7)      (11,9)      (9,7,5)
       (7,1)  (11,3)  (9,7,1)   (11,5)     (13,7)      (11,7,3)
              (13,1)  (11,5,1)  (13,3)     (17,3)      (11,9,1)
                      (13,3,1)  (15,1)     (19,1)      (13,5,3)
                                (7,5,3,1)  (9,7,3,1)   (13,7,1)
                                           (11,5,3,1)  (15,5,1)
                                                       (17,3,1)
		

Crossrefs

This is the relatively prime case of A000700.
The pairwise coprime version is the odd-part case of A007360.
Allowing even parts gives A078374.
The halved even version is A078374 aerated.
The non-strict version is A366843, with evens A000837.
The complement is counted by the strict case of A366852, with evens A018783.
A000041 counts integer partitions, strict A000009 (also into odds).
A051424 counts pairwise coprime partitions, for odd parts A366853.
A113685 counts partitions by sum of odd parts, rank statistic A366528.
A168532 counts partitions by gcd.
A366842 counts partitions whose odd parts have a common divisor > 1.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], And@@OddQ/@#&&UnsameQ@@#&&GCD@@#==1&]],{n,0,30}]
  • Python
    from math import gcd
    from sympy.utilities.iterables import partitions
    def A366844(n): return sum(1 for p in partitions(n) if all(d==1 for d in p.values()) and all(d&1 for d in p) and gcd(*p)==1) # Chai Wah Wu, Oct 30 2023

Extensions

More terms from Chai Wah Wu, Oct 30 2023

A366750 Number of strict integer partitions of n into odd parts with a common divisor > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 2, 1, 0, 2, 1, 1, 3, 1, 0, 2, 0, 1, 3, 1, 0, 3, 2, 1, 4, 1, 1, 5, 0, 1, 5, 1, 2, 5, 1, 1, 5, 2, 2, 6, 0, 1, 9, 1, 0, 9, 0, 3, 9, 1, 1, 9, 5, 1, 11, 1, 0, 15, 1, 2, 13, 1, 5, 14, 0, 1, 18
Offset: 0

Views

Author

Gus Wiseman, Nov 01 2023

Keywords

Examples

			The a(n) partitions for n = 3, 24, 30, 42, 45, 57, 60:
  (3)  (15,9)  (21,9)  (33,9)   (45)       (57)       (51,9)
       (21,3)  (25,5)  (35,7)   (33,9,3)   (45,9,3)   (55,5)
               (27,3)  (39,3)   (21,15,9)  (27,21,9)  (57,3)
                       (27,15)  (25,15,5)  (33,15,9)  (33,27)
                                (27,15,3)  (33,21,3)  (35,25)
                                           (39,15,3)  (39,21)
                                                      (45,15)
                                                      (27,21,9,3)
                                                      (33,15,9,3)
		

Crossrefs

This is the case of A000700 with a common divisor.
Including evens gives A303280.
The complement is counted by A366844, non-strict version A366843.
The non-strict version is A366852, with evens A018783.
A000041 counts integer partitions, strict A000009 (also into odds).
A051424 counts pairwise coprime partitions, for odd parts A366853.
A113685 counts partitions by sum of odd parts, rank statistic A366528.
A168532 counts partitions by gcd.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], And@@OddQ/@#&&UnsameQ@@#&&GCD@@#>1&]], {n,0,30}]
  • Python
    from math import gcd
    from sympy.utilities.iterables import partitions
    def A366750(n): return sum(1 for p in partitions(n) if all(d==1 for d in p.values()) and all(d&1 for d in p) and gcd(*p)>1) # Chai Wah Wu, Nov 02 2023

Extensions

More terms from Chai Wah Wu, Nov 02 2023
Showing 1-3 of 3 results.