A366924 Number of 2n-step walks on square lattice starting and ending at the origin with first step north and avoiding early returns.
1, 5, 44, 469, 5516, 68892, 896016, 11998869, 164259308, 2287663804, 32303714576, 461352451292, 6651528522256, 96669999247184, 1414652852290752, 20825721430968213, 308191001159544876, 4581880220433822108, 68398967956430765712, 1024826569020715088508, 15405900278361291658896
Offset: 1
Crossrefs
Cf. A054474.
Programs
-
Maple
b:= proc(n) b(n):= binomial(2*n, n)^2 end: a:= proc(n) option remember; b(n)/4-add(a(n-i)*b(i), i=1..n-1) end: seq(a(n), n=1..21); # Alois P. Heinz, Dec 05 2023
-
Mathematica
b[n_] := b[n] = Binomial[2*n, n]^2; a[n_] := a[n] = b[n]/4 - Sum[a[n-i]*b[i], {i, 1, n-1}]; Table[a[n], {n, 1, 21}] (* Jean-François Alcover, Jan 28 2025, after Alois P. Heinz *)
Formula
a(n) = A054474(n)/4.