A366930 a(n) is the smallest odd composite k such that n^((k+1)/2) == n (mod k).
9, 9, 341, 121, 341, 65, 15, 21, 9, 9, 9, 33, 33, 21, 21, 15, 15, 9, 9, 9, 21, 15, 21, 33, 25, 15, 9, 9, 9, 21, 15, 15, 25, 33, 21, 9, 9, 9, 57, 39, 15, 21, 21, 21, 9, 9, 9, 65, 21, 21, 21, 15, 39, 9, 9, 9, 21, 21, 57, 145, 15, 15, 9, 9, 9, 33, 15, 33, 25, 21
Offset: 0
Keywords
Programs
-
Mathematica
a[n_] := Module[{k = 9}, While[PrimeQ[k] || PowerMod[n, (k + 1)/2, k] != Mod[n, k], k += 2]; k]; Array[a, 100, 0] (* Amiram Eldar, Nov 01 2023 *)
-
PARI
a(n) = my(k=3); while (isprime(k) || Mod(n, k)^((k+1)/2) != n, k+=2); k; \\ Michel Marcus, Nov 01 2023
Formula
a(n) >= A309316(n).
Comments