cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A366971 a(n) = Sum_{k=3..n} binomial(k,3) * floor(n/k).

Original entry on oeis.org

0, 0, 1, 5, 15, 36, 71, 131, 216, 346, 511, 756, 1042, 1441, 1907, 2527, 3207, 4128, 5097, 6371, 7737, 9442, 11213, 13538, 15848, 18734, 21744, 25423, 29077, 33743, 38238, 43818, 49440, 56104, 62694, 70979, 78749, 88154, 97580, 108790, 119450, 132680, 145021, 159974
Offset: 1

Views

Author

Seiichi Manyama, Oct 30 2023

Keywords

Crossrefs

Partial sums of A363607.

Programs

  • PARI
    a(n) = sum(k=3, n, binomial(k, 3)*(n\k));
    
  • Python
    from math import isqrt, comb
    def A366971(n): return -comb((s:=isqrt(n))+1,4)*(s+1)+sum(comb((q:=n//w)+1,4)+(q+1)*comb(w,3) for w in range(1,s+1)) # Chai Wah Wu, Oct 30 2023

Formula

G.f.: 1/(1-x) * Sum_{k>=1} x^(3*k)/(1-x^k)^4 = 1/(1-x) * Sum_{k>=3} binomial(k,3) * x^k/(1-x^k).
a(n) = (A064603(n) - 3*A064602(n) + 2*A024916(n))/6. - Chai Wah Wu, Oct 30 2023

A134867 A010766 * A000012.

Original entry on oeis.org

1, 3, 1, 5, 2, 1, 8, 4, 2, 1, 10, 5, 3, 2, 1, 14, 8, 5, 3, 2, 1, 16, 9, 6, 4, 3, 2, 1, 20, 12, 8, 6, 4, 3, 2, 1, 23, 14, 10, 7, 5, 4, 3, 2, 1, 27, 17, 12, 9, 7, 5, 4, 3, 2, 1, 29, 18, 13, 10, 8, 6, 5, 4, 3, 2, 1, 35, 23, 17, 13, 10, 8, 6, 5, 4, 3, 2, 1, 37, 24, 18, 14, 11, 9, 7, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 14 2007

Keywords

Examples

			First few rows of the triangle:
   1;
   3,  1;
   5,  2,  1;
   8,  4,  2, 1;
  10,  5,  3, 2, 1;
  14,  8,  5, 3, 2, 1;
  16,  9,  6, 4, 3, 2, 1;
  20, 12,  8, 6, 4, 3, 2, 1;
  23, 14, 10, 7, 5, 4, 3, 2, 1;
  27, 17, 12, 9, 7, 5, 4, 3, 2, 1;
  ...
		

Crossrefs

Column k=1..4 give: A006218, A002541, A366968, A366972.
Row sums give A024916.

Programs

  • Mathematica
    t = Table[Sum[Floor[n/h], {h, k, n}], {n, 0, 10}, {k, 1, n}];
    u = Flatten[t]  (* A134867 array *)
    TableForm[t]    (* A134867 sequence *)
    (* Clark Kimberling, Oct 11 2014 *)
  • PARI
    T(n, k) = sum(j=k, n, n\j); \\ Seiichi Manyama, Oct 30 2023

Formula

A010766 * A000012 as infinite lower triangular matrices.
Triangle read by rows, partial row sums of A010766 starting fromt the right.
G.f. of column k: 1/(1-x) * Sum_{j>=1} x^(k*j)/(1-x^j) = 1/(1-x) * Sum_{j>=k} x^j/(1-x^j). - Seiichi Manyama, Oct 30 2023

Extensions

More terms from Seiichi Manyama, Oct 30 2023

A366969 a(n) = Sum_{k=3..n} (k-2) * floor(n/k).

Original entry on oeis.org

0, 0, 1, 3, 6, 11, 16, 24, 32, 43, 52, 69, 80, 97, 114, 136, 151, 179, 196, 227, 252, 281, 302, 347, 373, 408, 441, 486, 513, 570, 599, 651, 692, 739, 780, 854, 889, 942, 991, 1066, 1105, 1186, 1227, 1300, 1367, 1432, 1477, 1582, 1634, 1716, 1781, 1868, 1919, 2024
Offset: 1

Views

Author

Seiichi Manyama, Oct 30 2023

Keywords

Crossrefs

Partial sums of A152771.

Programs

  • PARI
    a(n) = sum(k=3, n, (k-2)*(n\k));
    
  • Python
    from math import isqrt
    def A366969(n): return n+(-(s:=isqrt(n))*(s*(s-2)-7)+sum(((q:=n//w)+1)*(q+(w<<1)-8) for w in range(1,s+1))>>1) # Chai Wah Wu, Oct 30 2023

Formula

G.f.: 1/(1-x) * Sum_{k>=1} x^(3*k)/(1-x^k)^2 = 1/(1-x) * Sum_{k>=3} (k-2) * x^k/(1-x^k).
a(n) = n + A024916(n) - 2*A006218(n). - Chai Wah Wu, Oct 30 2023

A366970 a(n) = Sum_{k=3..n} binomial(k-1,2) * floor(n/k).

Original entry on oeis.org

0, 0, 1, 4, 10, 21, 36, 60, 89, 131, 176, 245, 311, 404, 502, 631, 751, 926, 1079, 1295, 1501, 1756, 1987, 2330, 2612, 2978, 3332, 3779, 4157, 4707, 5142, 5736, 6278, 6926, 7508, 8336, 8966, 9785, 10555, 11533, 12313, 13427, 14288, 15449, 16521, 17742, 18777, 20306
Offset: 1

Views

Author

Seiichi Manyama, Oct 30 2023

Keywords

Crossrefs

Partial sums of A363610.

Programs

  • PARI
    a(n) = sum(k=3, n, binomial(k-1, 2)*(n\k));
    
  • Python
    from math import isqrt
    def A366970(n): return (-(s:=isqrt(n))*(s*(s**2-(s<<1)-1)+8)+sum(((q:=n//w)+1)*(q*(q-4)+3*(w**2-3*w+4)) for w in range(1,s+1)))//6 # Chai Wah Wu, Oct 30 2023

Formula

G.f.: 1/(1-x) * Sum_{k>=1} x^(3*k)/(1-x^k)^3 = 1/(1-x) * Sum_{k>=3} binomial(k-1,2) * x^k/(1-x^k).
a(n) = (A064602(n)-3*A024916(n))/2 + A006218(n). - Chai Wah Wu, Oct 30 2023
Showing 1-4 of 4 results.