cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A366968 a(n) = Sum_{k=3..n} floor(n/k).

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 6, 8, 10, 12, 13, 17, 18, 20, 23, 26, 27, 31, 32, 36, 39, 41, 42, 48, 50, 52, 55, 59, 60, 66, 67, 71, 74, 76, 79, 86, 87, 89, 92, 98, 99, 105, 106, 110, 115, 117, 118, 126, 128, 132, 135, 139, 140, 146, 149, 155, 158, 160, 161, 171, 172, 174, 179, 184
Offset: 1

Views

Author

Seiichi Manyama, Oct 30 2023

Keywords

Crossrefs

Column k=3 of A134867.
Partial sums of A023645.

Programs

  • PARI
    a(n) = sum(k=3, n, n\k);
    
  • Python
    from math import isqrt
    def A366968(n): return -(s:=isqrt(n))**2+(sum(n//k for k in range(3,s+1))<<1)+n+(n>>1) if n>3 else int(n>2) # Chai Wah Wu, Oct 30 2023

Formula

G.f.: 1/(1-x) * Sum_{k>=1} x^(3*k)/(1-x^k) = 1/(1-x) * Sum_{k>=3} x^k/(1-x^k).
a(n) = A006218(n)-n-floor(n/2). - Chai Wah Wu, Oct 30 2023

A366969 a(n) = Sum_{k=3..n} (k-2) * floor(n/k).

Original entry on oeis.org

0, 0, 1, 3, 6, 11, 16, 24, 32, 43, 52, 69, 80, 97, 114, 136, 151, 179, 196, 227, 252, 281, 302, 347, 373, 408, 441, 486, 513, 570, 599, 651, 692, 739, 780, 854, 889, 942, 991, 1066, 1105, 1186, 1227, 1300, 1367, 1432, 1477, 1582, 1634, 1716, 1781, 1868, 1919, 2024
Offset: 1

Views

Author

Seiichi Manyama, Oct 30 2023

Keywords

Crossrefs

Partial sums of A152771.

Programs

  • PARI
    a(n) = sum(k=3, n, (k-2)*(n\k));
    
  • Python
    from math import isqrt
    def A366969(n): return n+(-(s:=isqrt(n))*(s*(s-2)-7)+sum(((q:=n//w)+1)*(q+(w<<1)-8) for w in range(1,s+1))>>1) # Chai Wah Wu, Oct 30 2023

Formula

G.f.: 1/(1-x) * Sum_{k>=1} x^(3*k)/(1-x^k)^2 = 1/(1-x) * Sum_{k>=3} (k-2) * x^k/(1-x^k).
a(n) = n + A024916(n) - 2*A006218(n). - Chai Wah Wu, Oct 30 2023

A366970 a(n) = Sum_{k=3..n} binomial(k-1,2) * floor(n/k).

Original entry on oeis.org

0, 0, 1, 4, 10, 21, 36, 60, 89, 131, 176, 245, 311, 404, 502, 631, 751, 926, 1079, 1295, 1501, 1756, 1987, 2330, 2612, 2978, 3332, 3779, 4157, 4707, 5142, 5736, 6278, 6926, 7508, 8336, 8966, 9785, 10555, 11533, 12313, 13427, 14288, 15449, 16521, 17742, 18777, 20306
Offset: 1

Views

Author

Seiichi Manyama, Oct 30 2023

Keywords

Crossrefs

Partial sums of A363610.

Programs

  • PARI
    a(n) = sum(k=3, n, binomial(k-1, 2)*(n\k));
    
  • Python
    from math import isqrt
    def A366970(n): return (-(s:=isqrt(n))*(s*(s**2-(s<<1)-1)+8)+sum(((q:=n//w)+1)*(q*(q-4)+3*(w**2-3*w+4)) for w in range(1,s+1)))//6 # Chai Wah Wu, Oct 30 2023

Formula

G.f.: 1/(1-x) * Sum_{k>=1} x^(3*k)/(1-x^k)^3 = 1/(1-x) * Sum_{k>=3} binomial(k-1,2) * x^k/(1-x^k).
a(n) = (A064602(n)-3*A024916(n))/2 + A006218(n). - Chai Wah Wu, Oct 30 2023

A366967 a(n) = Sum_{k=2..n} binomial(k,2) * floor(n/k).

Original entry on oeis.org

0, 1, 4, 11, 21, 40, 61, 96, 135, 191, 246, 337, 415, 528, 646, 801, 937, 1145, 1316, 1568, 1802, 2089, 2342, 2737, 3047, 3451, 3841, 4338, 4744, 5358, 5823, 6474, 7060, 7758, 8384, 9294, 9960, 10835, 11657, 12717, 13537, 14739, 15642, 16881, 18025, 19314, 20395
Offset: 1

Views

Author

Seiichi Manyama, Oct 30 2023

Keywords

Crossrefs

Partial sums of A069153.

Programs

  • PARI
    a(n) = sum(k=2, n, binomial(k, 2)*(n\k));
    
  • Python
    from math import isqrt
    def A366967(n): return ((s:=isqrt(n))**2*(1-s**2)+sum((q:=n//k)*(3*k*(k-1)+q**2-1) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 30 2023

Formula

G.f.: 1/(1-x) * Sum_{k>=1} x^(2*k)/(1-x^k)^3 = 1/(1-x) * Sum_{k>=2} binomial(k,2) * x^k/(1-x^k).
a(n) = (A064602(n)-A024916(n))/2. - Chai Wah Wu, Oct 30 2023

A366985 a(n) = Sum_{k=1..n} binomial(k+3,3) * floor(n/k).

Original entry on oeis.org

4, 18, 42, 91, 151, 269, 393, 607, 851, 1207, 1575, 2183, 2747, 3561, 4457, 5640, 6784, 8452, 9996, 12158, 14326, 17004, 19608, 23306, 26642, 30870, 35174, 40518, 45482, 52214, 58202, 65930, 73458, 82382, 90998, 102295, 112179, 124393, 136457, 151125, 164373
Offset: 1

Views

Author

Seiichi Manyama, Oct 30 2023

Keywords

Crossrefs

Partial sums of A116963.
Cf. A366971.

Programs

  • PARI
    a(n) = sum(k=1, n, binomial(k+3, 3)*(n\k));
    
  • Python
    from math import isqrt
    def A366985(n): return (-(s:=isqrt(n))*(s*(s*(s*(s+11)+45)+85)+74)+sum(((q:=n//w)+1)*(q*(q*(q+9)+26)+((w+4)*(w*(w+2)+3)<<2)) for w in range(1,s+1)))//3>>3 # Chai Wah Wu, Oct 31 2023

Formula

G.f.: 1/(1-x) * Sum_{k>0} (1/(1-x^k)^4 - 1) = 1/(1-x) * Sum_{k>0} binomial(k+3,3) * x^k/(1-x^k).
Showing 1-5 of 5 results.