cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A366978 a(n) = Sum_{j=1..n} binomial(floor(n/j)+n,n+1).

Original entry on oeis.org

1, 5, 17, 64, 220, 839, 3061, 11684, 44126, 169432, 648589, 2505411, 9670165, 37497431, 145502481, 566076182, 2204451031, 8599761208, 33581164151, 131296796355, 513812162117, 2012709456997, 7890502860027, 30958303856804, 121549519502347, 477555096290870, 1877411492125154
Offset: 1

Views

Author

Chai Wah Wu, Oct 30 2023

Keywords

Crossrefs

Superdiagonal of array in A366977.

Programs

  • Mathematica
    Table[Sum[Binomial[j+n-1,n]Floor[n/j],{j,n}],{n,30}] (* Harvey P. Dale, Jul 19 2024 *)
  • Python
    from math import isqrt, comb
    def A366978(n): return (-(s:=isqrt(n))**2*comb(s+n,n)+sum((q:=n//j)*((n+1)*comb(j+n-1,n)+comb(q+n,n)) for j in range(1,s+1)))//(n+1)

Formula

a(n) = Sum_{j=1..n} binomial(j+n-1,n)*floor(n/j).
a(n) ~ 4^n / sqrt(Pi*n). - Vaclav Kotesovec, Sep 19 2024

A366986 Square array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{d|n} binomial(d+k-1,k).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 4, 4, 3, 1, 5, 7, 7, 2, 1, 6, 11, 14, 6, 4, 1, 7, 16, 25, 16, 12, 2, 1, 8, 22, 41, 36, 31, 8, 4, 1, 9, 29, 63, 71, 71, 29, 15, 3, 1, 10, 37, 92, 127, 147, 85, 50, 13, 4, 1, 11, 46, 129, 211, 280, 211, 145, 52, 18, 2, 1, 12, 56, 175, 331, 498, 463, 371, 176, 74, 12, 6
Offset: 1

Views

Author

Seiichi Manyama, Oct 31 2023

Keywords

Examples

			Square  array begins:
  1,  1,  1,  1,   1,   1,   1, ...
  2,  3,  4,  5,   6,   7,   8, ...
  2,  4,  7, 11,  16,  22,  29, ...
  3,  7, 14, 25,  41,  63,  92, ...
  2,  6, 16, 36,  71, 127, 211, ...
  4, 12, 31, 71, 147, 280, 498, ...
  2,  8, 29, 85, 211, 463, 925, ...
		

Crossrefs

Columns k=0..5 give A000005, A000203, A007437, A059358, A073570, A101289.
T(n,n-1) gives A332508.
T(n,n) gives A343548.
Cf. A366977.

Programs

  • PARI
    T(n, k) = sumdiv(n, d, binomial(d+k-1, k));

Formula

G.f. of column k: Sum_{j>=1} x^j/(1 - x^j)^(k+1).
Showing 1-2 of 2 results.