A367033 Von Neumann ordinals in bracket notation encoded by binary bits: '{' -> 0, '}'-> 1.
1, 3, 39, 9807, 642665631, 2760227864398567743, 50917216999682251351660181504218706559, 17326231117678921325668214077168498563134593883851671914433735718213795341567
Offset: 0
Examples
For n=3, Von Neumann's 3-element set {0, 1, 2} is { {}, {{}}, {{},{{}}} } 0 01 0011 001 00111 1 binary = a(3) = 9807
Programs
-
Mathematica
With[{nmax=8},Map[FromDigits[#,2]&,NestList["0"<>StringTake[#,{2,-2}]<>#<>"1"&,"01",nmax]]] (* Paolo Xausa, Nov 20 2023 *)
-
PARI
a(n) = my(k = 1); for(m = 1, n, k = (k-1)*2^(2^m)+2*k+1); k; \\ Thomas Scheuerle, Nov 21 2023
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A367033(n): return 1-(m:=1<<(2<
A367033(n-1) if n>0 else 1
Extensions
a(7) from Paolo Xausa, Nov 20 2023
Offset corrected by Kevin Ryde, Dec 24 2023
Comments