A367052 Number of n X n matrices with elements {0, 1} whose characteristic polynomial has non-leading coefficients in {-1,0}.
1, 2, 12, 195, 7971, 754610, 157474968, 70513430631
Offset: 0
Examples
For n = 3, there are a(3) = 195 3 X 3 matrices whose non-leading coefficients are in {-1,0}, eight of which are shown below. [0 0 1] [0 0 1] [0 0 0] [0 1 0] [0 0 0] [1 0 0] [1 0 1] [1 0 1] [0 1 0], [0 1 0], [1 1 0], [1 0 0], . [1 0 0] [1 1 0] [1 1 0] [1 1 0] [1 0 0] [0 0 1] [1 0 0] [1 0 1] [1 1 0], [1 0 0], [1 1 0], and [1 0 0]. These have characteristic polynomials x^3, x^3 - 1, x^3 - x, x^3 - x - 1, x^3 - x^2, x^3 - x^2 - 1, x^3 - x^2 - x, and x^3 - x^2 - x - 1 respectively. There are 25, 2, 21, 6, 75, 6, 48, and 12 matrices with each of these characteristic polynomials respectively.
Links
- Wikipedia, Faddeev-LeVerrier algorithm
- Wikipedia, Intrinsic Function
Programs
-
Mathematica
IsValid[matrix_, n_] := AllTrue[ CoefficientList[(-1)^n*CharacteristicPolynomial[matrix, x], x][[;;-2]], -1 <= # <= 0 & ] a[0] := 1 a[n_] := Length[Select[Tuples[{0, 1}, {n, n}], IsValid[#, n] &]]
-
Python
from itertools import product from sympy import Matrix def A367052(n): return sum(1 for p in product((0,1),repeat=n**2) if all(d==0 or d==-1 for d in Matrix(n,n,p).charpoly().as_list()[1:])) if n else 1 # Chai Wah Wu, Nov 05 2023
Extensions
a(5)-a(6), using the Faddeev-LeVerrier algorithm, from Martin Ehrenstein, Nov 06 2023
a(7), using AVX2 Intrinsics, from Martin Ehrenstein, Nov 18 2023
Comments