A367058
G.f. satisfies A(x) = 1 + x*A(x)^3 + x^3*A(x)^2.
Original entry on oeis.org
1, 1, 3, 13, 60, 301, 1595, 8774, 49631, 286870, 1686876, 10059301, 60689041, 369762262, 2271892435, 14060917955, 87579290486, 548558815484, 3453077437532, 21833406999880, 138603490377008, 883075187803622, 5644796991703781, 36191055027026410
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(2*n-4*k+1, k)*binomial(3*n-7*k, n-3*k)/(2*n-4*k+1));
A367059
G.f. satisfies A(x) = 1 + x*A(x)^3 + x^3*A(x)^3.
Original entry on oeis.org
1, 1, 3, 13, 61, 309, 1651, 9153, 52161, 303681, 1798459, 10800237, 65614237, 402544597, 2490398139, 15519350593, 97326638145, 613786324353, 3890080513395, 24764386415821, 158281551244029, 1015314894877237, 6534249237530115, 42178452056044929
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(2*n-3*k+1, k)*binomial(3*n-6*k, n-3*k)/(2*n-3*k+1));
A367060
G.f. satisfies A(x) = 1 + x*A(x)^3 + x^3*A(x)^4.
Original entry on oeis.org
1, 1, 3, 13, 62, 318, 1718, 9627, 55437, 326070, 1950630, 11831706, 72597453, 449804148, 2810260317, 17685019893, 111997074910, 713223954540, 4564502770117, 29341499243806, 189364923816282, 1226535071582818, 7970416067268898, 51949175133236526
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(2*n-2*k+1, k)*binomial(3*n-5*k, n-3*k)/(2*n-2*k+1));
A367061
G.f. satisfies A(x) = 1 + x*A(x)^3 + x^3*A(x)^5.
Original entry on oeis.org
1, 1, 3, 13, 63, 328, 1797, 10210, 59607, 355409, 2155166, 13250055, 82402013, 517453773, 3276534510, 20897024350, 134118458191, 865574280977, 5613879001983, 36571135386965, 239187418784442, 1569994174618799, 10338925554033967, 68288387553861826
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(2*n-k+1, k)*binomial(3*n-4*k, n-3*k)/(2*n-k+1));
A367062
G.f. satisfies A(x) = 1 + x*A(x)^3 + x^3*A(x)^6.
Original entry on oeis.org
1, 1, 3, 13, 64, 339, 1889, 10917, 64836, 393292, 2426335, 15176847, 96029114, 613540477, 3952727925, 25649572693, 167494312692, 1099850119488, 7257905610260, 48106858236044, 320131295055690, 2138010763838375, 14325505944147495, 96273042489762471
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(2*n+1, k)*binomial(3*n-3*k, n-3*k))/(2*n+1);
Showing 1-5 of 5 results.