cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A367057 G.f. satisfies A(x) = 1 + x*A(x)^3 + x^3*A(x).

Original entry on oeis.org

1, 1, 3, 13, 59, 294, 1549, 8477, 47715, 274468, 1606284, 9533595, 57247969, 347169053, 2123148153, 13079296531, 81087402683, 505543820304, 3167578950478, 19935616736595, 125971005957924, 798883392476824, 5083047458454395, 32439034490697090
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-5*k+1, k)*binomial(3*n-8*k, n-3*k)/(2*n-5*k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-5*k+1,k) * binomial(3*n-8*k,n-3*k)/(2*n-5*k+1).

A367058 G.f. satisfies A(x) = 1 + x*A(x)^3 + x^3*A(x)^2.

Original entry on oeis.org

1, 1, 3, 13, 60, 301, 1595, 8774, 49631, 286870, 1686876, 10059301, 60689041, 369762262, 2271892435, 14060917955, 87579290486, 548558815484, 3453077437532, 21833406999880, 138603490377008, 883075187803622, 5644796991703781, 36191055027026410
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-4*k+1, k)*binomial(3*n-7*k, n-3*k)/(2*n-4*k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-4*k+1,k) * binomial(3*n-7*k,n-3*k)/(2*n-4*k+1).

A367059 G.f. satisfies A(x) = 1 + x*A(x)^3 + x^3*A(x)^3.

Original entry on oeis.org

1, 1, 3, 13, 61, 309, 1651, 9153, 52161, 303681, 1798459, 10800237, 65614237, 402544597, 2490398139, 15519350593, 97326638145, 613786324353, 3890080513395, 24764386415821, 158281551244029, 1015314894877237, 6534249237530115, 42178452056044929
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-3*k+1, k)*binomial(3*n-6*k, n-3*k)/(2*n-3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-3*k+1,k) * binomial(3*n-6*k,n-3*k)/(2*n-3*k+1).

A367061 G.f. satisfies A(x) = 1 + x*A(x)^3 + x^3*A(x)^5.

Original entry on oeis.org

1, 1, 3, 13, 63, 328, 1797, 10210, 59607, 355409, 2155166, 13250055, 82402013, 517453773, 3276534510, 20897024350, 134118458191, 865574280977, 5613879001983, 36571135386965, 239187418784442, 1569994174618799, 10338925554033967, 68288387553861826
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-k+1, k)*binomial(3*n-4*k, n-3*k)/(2*n-k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-k+1,k) * binomial(3*n-4*k,n-3*k)/(2*n-k+1).

A367062 G.f. satisfies A(x) = 1 + x*A(x)^3 + x^3*A(x)^6.

Original entry on oeis.org

1, 1, 3, 13, 64, 339, 1889, 10917, 64836, 393292, 2426335, 15176847, 96029114, 613540477, 3952727925, 25649572693, 167494312692, 1099850119488, 7257905610260, 48106858236044, 320131295055690, 2138010763838375, 14325505944147495, 96273042489762471
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n+1, k)*binomial(3*n-3*k, n-3*k))/(2*n+1);

Formula

a(n) = (1/(2*n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+1,k) * binomial(3*n-3*k,n-3*k).
Showing 1-5 of 5 results.