A377170 Sum of the nonnegative terms in the n-th row of A365968.
0, 1, 4, 12, 36, 98, 250, 616, 1484, 3508, 8140, 18620, 42164, 94632, 210518, 464840, 1020556, 2229014, 4843316, 10476164, 22576728, 48489154, 103790370, 221484824, 471427432, 1001027226, 2120503144, 4482083616, 9455815160, 19913405076, 41862056992, 87857540836
Offset: 0
Examples
The 4th row of A365968 is: [-10, -8, -6, -4, -4, -2, 0, 2, -2, 0, 2, 4, 4, 6, 8, 10], so a(4) = 2 + 2 + 4 + 4 + 6 + 8 + 10 = 36.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, s) option remember; `if`(n=0, s, b(n-1, abs(s-n))+b(n-1, s+n)) end: a:= n-> b(n, 0)/2: seq(a(n), n=0..31); # Alois P. Heinz, Jun 13 2025
Formula
a(n) = (1/2) * Sum_{k=0..2^n-1} abs(A365968(n,k)).
a(n) = (1/2) * Sum_{i=0..2^n-1} abs(A384868(i+2^n-1)). - Alois P. Heinz, Jun 13 2025
Comments