A367097 Least positive integer whose multiset of prime indices has exactly n distinct semi-sums.
1, 4, 12, 30, 60, 210, 330, 660, 2730, 3570, 6270, 12540, 53130, 79170, 110670, 221340, 514140, 1799490, 2284590, 4196010, 6750870, 13501740, 37532220, 97350330, 131362770, 189620970, 379241940, 735844830, 1471689660
Offset: 0
Examples
The prime indices of 60 are {1,1,2,3}, with four semi-sums {2,3,4,5}, and 60 is the first number whose prime indices have four semi-sums, so a(4) = 60. The terms together with their prime indices begin: 1: {} 4: {1,1} 12: {1,1,2} 30: {1,2,3} 60: {1,1,2,3} 210: {1,2,3,4} 330: {1,2,3,5} 660: {1,1,2,3,5} 2730: {1,2,3,4,6} 3570: {1,2,3,4,7} 6270: {1,2,3,5,8} 12540: {1,1,2,3,5,8} 53130: {1,2,3,4,5,9} 79170: {1,2,3,4,6,10} 110670: {1,2,3,4,7,11} 221340: {1,1,2,3,4,7,11} 514140: {1,1,2,3,5,8,13}
Crossrefs
Programs
-
Mathematica
nn=1000; w=Table[Length[Union[Total/@Subsets[prix[n],{2}]]],{n,nn}]; spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&]; v=Table[Position[w,k][[1,1]],{k,0,spnm[w]}]
-
Python
from itertools import count from sympy import factorint, primepi from sympy.utilities.iterables import multiset_combinations def A367097(n): return next(k for k in count(1) if len({sum(s) for s in multiset_combinations({primepi(i):j for i,j in factorint(k).items()},2)}) == n) # Chai Wah Wu, Nov 13 2023
Formula
2 | a(n) for n > 0. - David A. Corneth, Nov 13 2023
Extensions
a(17)-a(22) from Chai Wah Wu, Nov 13 2023
a(23)-a(28) from David A. Corneth, Nov 13 2023
Comments