A367151 Primes whose reversals are triprimes.
29, 67, 89, 139, 223, 227, 233, 239, 269, 271, 277, 281, 421, 457, 461, 467, 499, 521, 523, 571, 577, 613, 617, 619, 653, 659, 809, 839, 881, 883, 887, 1049, 1123, 1289, 1373, 1459, 1543, 1579, 1609, 1783, 2003, 2011, 2017, 2027, 2029, 2053, 2081, 2087, 2141, 2143, 2213, 2221, 2237, 2239, 2243
Offset: 1
Examples
a(3) = 89 is a term because 89 is a prime and its reversal 98 = 2*7^2 is the product of 3 primes, counted with multiplicity.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
rev:= proc(n) local L,i; L:= convert(n,base,10); add(L[-i]*10^(i-1),i=1..nops(L)) end proc: select(t -> isprime(t) and numtheory:-bigomega(rev(t)) = 3, [seq(i,i=3..10000,2)]);
-
Mathematica
Select[Prime[Range[350]], PrimeOmega[FromDigits[Reverse[IntegerDigits[#]]]]==3&] (* Stefano Spezia, Nov 07 2023 *) Select[Prime[Range[400]],PrimeOmega[IntegerReverse[#]]==3&] (* Harvey P. Dale, Jan 10 2024 *)