A367192 Number of discrete implications I:L_n^2-> L_n defined on the finite chain L_n={0,1,...n}, which satisfy the left neutrality principle, i.e., I(n,y)=y for all y in L_n.
1, 5, 84, 4719, 884884, 553361016, 1153471856900, 8012241391384695, 185424118272842096128, 461964068878932837522210816
Offset: 1
Links
- Marc Munar, Python program.
- Marc Munar, S. Massanet and D. Ruiz-Aguilera, On the cardinality of some families of discrete connectives, Information Sciences, Volume 621, 2023, 708-728.
- Marc Munar, S. Massanet and D. Ruiz-Aguilera, DiscreteFuzzyOperators - A Python library for computing with fuzzy operators, Zenodo, Version 1.13.
Crossrefs
Particular case of the enumeration of discrete implications in general, enumerated in A360612.
Programs
-
Python
See Github link
Formula
a(n)=G((1,2,...,n)), where G(v) is defined recursively as:
·G(v)=det(A(v))-Sum_{x in V_n(v)\v} G(v), where:
· A(v)_{i,j}=binomial(n+v_j, n-i+j).
· V_n(v) is the set of decreasing vectors x of n components, whose entries are taken from L_n, and x_i<=v_i for all i in {1,...,n}.
·G(v)=Binomial(n+x-1,x), if v=(x,0,...,0), with v being a vector of n components and 1<=x<=n.
Comments