A367223 Number of subsets of {1..n} whose cardinality cannot be written as a nonnegative linear combination of the elements.
0, 0, 1, 2, 4, 8, 15, 27, 49, 90, 165, 301, 548, 998, 1819, 3316, 6040, 10986, 19959, 36253, 65904, 119986, 218796, 399461, 729752, 1333162, 2434411, 4441954, 8097478, 14746715, 26830230, 48773790, 88605927, 160900978, 292140427, 530487359, 963610200, 1751171679, 3183997509
Offset: 0
Keywords
Examples
3 cannot be written as a nonnegative linear combination of 2, 4, and 5, so {2,4,5} is counted under a(6). The a(2) = 1 through a(6) = 15 subsets: {2} {2} {2} {2} {2} {3} {3} {3} {3} {4} {4} {4} {3,4} {5} {5} {3,4} {6} {3,5} {3,4} {4,5} {3,5} {2,4,5} {3,6} {4,5} {4,6} {5,6} {2,4,5} {2,4,6} {2,5,6} {4,5,6}
Crossrefs
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
Triangles:
A116861 counts positive linear combinations of strict partitions of k.
A364916 counts linear combinations of strict partitions of k.
Programs
-
Mathematica
combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]]; Table[Length[Select[Subsets[Range[n]], combs[Length[#],Union[#]]=={}&]], {n,0,10}]
-
Python
from itertools import combinations from sympy.utilities.iterables import partitions def A367223(n): c, mlist = 0, [] for m in range(1,n+1): t = set() for p in partitions(m): t.add(tuple(sorted(p.keys()))) mlist.append([set(d) for d in t]) for k in range(1,n+1): for w in combinations(range(1,n+1),k): ws = set(w) for s in mlist[k-1]: if s <= ws: break else: c += 1 return c # Chai Wah Wu, Nov 16 2023
Formula
a(n) = 2^n - A367222(n).
Extensions
a(14)-a(33) from Chai Wah Wu, Nov 15 2023
a(34)-a(38) from Max Alekseyev, Feb 25 2025