cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A367236 G.f. satisfies A(x) = 1 + x / (1 - x*A(x)^2)^2.

Original entry on oeis.org

1, 1, 2, 7, 26, 107, 462, 2074, 9572, 45147, 216638, 1054254, 5190710, 25810064, 129423512, 653740518, 3323270096, 16988894131, 87283137130, 450434292624, 2333851816654, 12136369892776, 63318984098996, 331347363084737, 1738713937163124, 9146850725274636
Offset: 0

Views

Author

Seiichi Manyama, Nov 11 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=2, t=0, u=2) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+1));

Formula

If g.f. satisfies A(x) = 1 + x*A(x)^t / (1 - x*A(x)^u)^s, then a(n) = Sum_{k=0..n} binomial(t*k+u*(n-k)+1,k) * binomial(n+(s-1)*k-1,n-k) / (t*k+u*(n-k)+1).

A367237 G.f. satisfies A(x) = 1 + x*A(x)^2 / (1 - x*A(x)^2)^2.

Original entry on oeis.org

1, 1, 4, 20, 114, 702, 4550, 30585, 211270, 1490561, 10695354, 77809481, 572608270, 4254996670, 31882486314, 240620654468, 1827464108766, 13956516915303, 107114560278680, 825727777034002, 6390721805005678, 49638977802126104, 386824024893533450
Offset: 0

Views

Author

Seiichi Manyama, Nov 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Root[-1 + #1 + x*#1^2 - 2*x*#1^3 - x^2*#1^4 + x^2*#1^5&, 1],{x,0,20}],x] (* Vaclav Kotesovec, Nov 13 2023 *)
  • PARI
    a(n, s=2, t=2, u=2) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+1));

Formula

If g.f. satisfies A(x) = 1 + x*A(x)^t / (1 - x*A(x)^u)^s, then a(n) = Sum_{k=0..n} binomial(t*k+u*(n-k)+1,k) * binomial(n+(s-1)*k-1,n-k) / (t*k+u*(n-k)+1).
a(n) ~ sqrt((12735 + (849*(23867603343 - 274945024*sqrt(849)))^(1/3) + (849*(23867603343 + 274945024*sqrt(849)))^(1/3))/283) * ((2053 + (10379182717 - 43903488*sqrt(849))^(1/3) + (10379182717 + 43903488*sqrt(849))^(1/3))^n / (sqrt(Pi) * n^(3/2) * 2^(8*n + 9/2) * 3^(n + 1/2))). - Vaclav Kotesovec, Nov 13 2023

A367280 G.f. satisfies A(x) = 1 + x*A(x)^3 / (1 - x*A(x)^3)^2.

Original entry on oeis.org

1, 1, 5, 33, 251, 2073, 18069, 163600, 1523731, 14504988, 140499307, 1380322749, 13721269995, 137758098052, 1394840743638, 14227181658075, 146048314214619, 1507739540085350, 15643456882376418, 163036276218805231, 1706021256401103673
Offset: 0

Views

Author

Seiichi Manyama, Nov 12 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=2, t=3, u=3) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+1));

Formula

If g.f. satisfies A(x) = 1 + x*A(x)^t / (1 - x*A(x)^u)^s, then a(n) = Sum_{k=0..n} binomial(t*k+u*(n-k)+1,k) * binomial(n+(s-1)*k-1,n-k) / (t*k+u*(n-k)+1).
Showing 1-3 of 3 results.