cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A367240 G.f. satisfies A(x) = 1 + x*A(x)^2 / (1 - x*A(x)^2)^3.

Original entry on oeis.org

1, 1, 5, 29, 192, 1372, 10314, 80390, 643774, 5264984, 43788393, 369221844, 3149085162, 27119598885, 235495141963, 2059677411141, 18127763268114, 160433599528417, 1426870597505859, 12746368353418175, 114316604199957112, 1028937342955189009
Offset: 0

Views

Author

Seiichi Manyama, Nov 11 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=3, t=2, u=2) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+1));

Formula

If g.f. satisfies A(x) = 1 + x*A(x)^t / (1 - x*A(x)^u)^s, then a(n) = Sum_{k=0..n} binomial(t*k+u*(n-k)+1,k) * binomial(n+(s-1)*k-1,n-k) / (t*k+u*(n-k)+1).

A367241 G.f. satisfies A(x) = 1 + x*A(x)^3 / (1 - x*A(x)^2)^3.

Original entry on oeis.org

1, 1, 6, 42, 335, 2886, 26166, 246028, 2377161, 23459250, 235452723, 2395998060, 24663705924, 256358715585, 2686893609015, 28364934291912, 301334854075058, 3219067773992448, 34558507062732315, 372646872976093760, 4034272938342360147
Offset: 0

Views

Author

Seiichi Manyama, Nov 11 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=3, t=3, u=2) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+1));

Formula

If g.f. satisfies A(x) = 1 + x*A(x)^t / (1 - x*A(x)^u)^s, then a(n) = Sum_{k=0..n} binomial(t*k+u*(n-k)+1,k) * binomial(n+(s-1)*k-1,n-k) / (t*k+u*(n-k)+1).

A367261 G.f. satisfies A(x) = 1 + x*A(x) * (1 + x*A(x)^2)^3.

Original entry on oeis.org

1, 1, 4, 16, 77, 393, 2113, 11761, 67217, 392140, 2325691, 13980390, 84990482, 521623164, 3227679457, 20114056545, 126125100615, 795207084713, 5038166859565, 32059491655921, 204806561028553, 1313023485343009, 8445060537757367, 54476991669555231
Offset: 0

Views

Author

Seiichi Manyama, Nov 11 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=3, t=1, u=2) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+1));

Formula

If g.f. satisfies A(x) = 1 + x*A(x)^t * (1 + x*A(x)^u)^s, then a(n) = Sum_{k=0..n} binomial(t*k+u*(n-k)+1,k) * binomial(s*k,n-k) / (t*k+u*(n-k)+1).
Showing 1-3 of 3 results.