cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367267 Triangle read by rows. T(n, k) = binomial(n, k) * binomial(n - 1, k - 1).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 6, 1, 0, 4, 18, 12, 1, 0, 5, 40, 60, 20, 1, 0, 6, 75, 200, 150, 30, 1, 0, 7, 126, 525, 700, 315, 42, 1, 0, 8, 196, 1176, 2450, 1960, 588, 56, 1, 0, 9, 288, 2352, 7056, 8820, 4704, 1008, 72, 1, 0, 10, 405, 4320, 17640, 31752, 26460, 10080, 1620, 90, 1
Offset: 0

Views

Author

Peter Luschny, Nov 11 2023

Keywords

Examples

			Triangle T(n, k) starts:
  [0] 1;
  [1] 0, 1;
  [2] 0, 2,   1;
  [3] 0, 3,   6,    1;
  [4] 0, 4,  18,   12,    1;
  [5] 0, 5,  40,   60,   20,    1;
  [6] 0, 6,  75,  200,  150,   30,    1;
  [7] 0, 7, 126,  525,  700,  315,   42,    1;
  [8] 0, 8, 196, 1176, 2450, 1960,  588,   56,  1;
  [9] 0, 9, 288, 2352, 7056, 8820, 4704, 1008, 72, 1;
		

Crossrefs

Cf. A088218 (row sums), A367270 (row reversed).

Programs

  • Maple
    T := (n, k) -> binomial(n, k) * binomial(n - 1, k - 1):
    for n from 0 to 6 do seq(T(n, k), k = 0..n) od;
    # Or:
    T := (n, k) -> if k=0 then k^n elif k=1 then n else (n/k)*binomial(n-1, k-1)^2 fi:
    seq(seq(T(n, k), k = 0..n), n = 0..9);
  • Mathematica
    A367267[n_,k_]:=Binomial[n,k]Binomial[n-1,k-1];
    Table[A367267[n,k],{n,0,15},{k,0,n}] (* Paolo Xausa, Nov 29 2023 *)

Formula

For k >= 2: T(n, k) = (n / k) * binomial(n-1, k-1)^2.