cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367269 Triangle T(n, k) read by rows and based on A042948 yields a permutation of the natural numbers.

Original entry on oeis.org

1, 4, 3, 6, 5, 2, 13, 12, 9, 8, 15, 14, 11, 10, 7, 26, 25, 22, 21, 18, 17, 28, 27, 24, 23, 20, 19, 16, 43, 42, 39, 38, 35, 34, 31, 30, 45, 44, 41, 40, 37, 36, 33, 32, 29, 64, 63, 60, 59, 56, 55, 52, 51, 48, 47, 66, 65, 62, 61, 58, 57, 54, 53, 50, 49, 46, 89, 88, 85, 84, 81, 80, 77, 76, 73, 72, 69, 68
Offset: 0

Views

Author

Werner Schulte, Dec 06 2023

Keywords

Comments

Compare this triangle to A364390.

Examples

			Triangle T(n, k) for 0 <= k <= n starts:
n\k :   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14
=================================================================
 0  :   1
 1  :   4   3
 2  :   6   5   2
 3  :  13  12   9   8
 4  :  15  14  11  10   7
 5  :  26  25  22  21  18  17
 6  :  28  27  24  23  20  19  16
 7  :  43  42  39  38  35  34  31  30
 8  :  45  44  41  40  37  36  33  32  29
 9  :  64  63  60  59  56  55  52  51  48  47
10  :  66  65  62  61  58  57  54  53  50  49  46
11  :  89  88  85  84  81  80  77  76  73  72  69  68
12  :  91  90  87  86  83  82  79  78  75  74  71  70  67
13  : 118 117 114 113 110 109 106 105 102 101  98  97  94  93
14  : 120 119 116 115 112 111 108 107 104 103 100  99  96  95  92
etc.
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= (n+1) * (n+2) / 2 + n * Mod[n,2] - 2 * k + Mod[k,2]; Table[T[n,k],{n,0,11},{k,0,n}]//Flatten (* Stefano Spezia, Dec 06 2023 *)
  • PARI
    T(n, k) = (n+1)*(n+2)/2+n*(n%2)-2*k+(k%2)

Formula

T(n, k) = (n+1) * (n+2) / 2 + n * (n mod 2) - 2 * k + (k mod 2) for 0 <= k <= n.
T(n, k) = T(n, 0) + A042948(k) for 0 <= k <= n.
T(n, 0) = (n+1) * (n+2) / 2 + n * (n mod 2) for n >= 0.
T(n, n) = (n^2 - n + 2) / 2 + (n+1) * (n mod 2) for n >= 0.
T(2*n, n) = 2 * n^2 + n + 1 + (n mod 2) for n >= 0.
T(n, k) = T(n, k-1) + T(n-1, k) - T(n-1, k-1) for 0 < k < n.
Row sums: A006003(n+1) - 2 * (-1)^n * (floor((n+1)/2))^2 for n >= 0.
G.f. of column k = 0: F(t, 0) = Sum_{n>=0} T(n, 0) * t^n = (1 + 3*t + t^3 - t^4) / ((1-t)^3 * (1+t)^2).
G.f.: F(t, x) = Sum_{n>=0, k=0..n} T(n, k) * x^k * t^n = (F(t, 0) - x * F(x*t, 0)) / (1-x) - 2*x*t / ((1-t) * (1-x*t)^2) + x*t / ((1-t) * (1-x^2*t^2)).
Alt. row sums: (n^(2 - n mod 2) + 2 - n mod 2) / 2 for n >= 0.