cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A367283 G.f. satisfies A(x) = 1 + x*A(x)^2 * (1 + x*A(x)^3)^2.

Original entry on oeis.org

1, 1, 4, 20, 116, 728, 4818, 33100, 233824, 1687764, 12393520, 92291681, 695325926, 5290359124, 40591599128, 313725215636, 2440203573816, 19087022233906, 150042056387660, 1184734863936672, 9392213303130904, 74728563957003952, 596531545003840160
Offset: 0

Views

Author

Seiichi Manyama, Nov 12 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n, s=2, t=2, u=3) = sum(k=0, n, binomial(t*k+u*(n-k)+1, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+1));

Formula

If g.f. satisfies A(x) = 1 + x*A(x)^t * (1 + x*A(x)^u)^s, then a(n) = Sum_{k=0..n} binomial(t*k+u*(n-k)+1,k) * binomial(s*k,n-k) / (t*k+u*(n-k)+1).

A371586 G.f. satisfies A(x) = ( 1 + x*A(x)^2 * (1 + x*A(x)^2)^2 )^2.

Original entry on oeis.org

1, 2, 13, 106, 986, 9898, 104535, 1144630, 12876908, 147937396, 1728352171, 20471245898, 245254954252, 2966792716710, 36186910210761, 444559817944096, 5495828249436652, 68318636646858588, 853455362282694440, 10708603125245767280, 134897492549870974674
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2024

Keywords

Crossrefs

Cf. A367282.

Programs

  • PARI
    a(n, r=2, s=2, t=4, u=4) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).
Showing 1-2 of 2 results.