cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367341 Numbers without comma-successors: these are the numbers k such that if the commas sequence A121805 is started at k instead of 1, there is no second term.

Original entry on oeis.org

18, 27, 36, 45, 54, 63, 72, 81, 918, 927, 936, 945, 954, 963, 972, 981, 9918, 9927, 9936, 9945, 9954, 9963, 9972, 9981, 99918, 99927, 99936, 99945, 99954, 99963, 99972, 99981, 999918, 999927, 999936, 999945, 999954, 999963, 999972, 999981, 9999918, 9999927, 9999936, 9999945, 9999954, 9999963, 9999972, 9999981
Offset: 1

Views

Author

N. J. A. Sloane, Nov 15 2023

Keywords

Comments

Comment from N. J. A. Sloane, Nov 19 2023 (Start)
Theorem. This sequence consists precisely of the decimal numbers of the form
99...9xy = 100*(10^i-1) + 9*x + 9,
with i >= 0 copies of 9, and 1 <= x <= 8.
(See link for proof.) This was stated without proof by David W. Wilson in 2007 (see the Angelini link), and was conjectured (in a slightly less precise form) by Ivan N. Ianakiev, Nov 16 2023.
This implies that the conjecture below is true, as well as the conjecture in A367342.
All terms are multiples of 9, and A367342 gives a(n)/9.
(End)
Numbers k such that A367338(k) = A367339(k) = -1.
By definition, A330129 is a subsequence.

Crossrefs

Programs

  • Maple
    for i from 0 to 4 do t1:=100*(10^i-1);
     for x from 1 to 8 do lprint(t1+9*x+9);
    od: od:
  • Mathematica
    fQ[n_]:=Module[{k=n+10*Last[IntegerDigits[n]]+Range[9]}, Select[k,#-n==FromDigits[{Last[IntegerDigits[n]],First[IntegerDigits[#]]}]&]] =={};
    Select[Range[10^5],fQ[#]&] (* Ivan N. Ianakiev, Nov 16 2023 *)
  • Python
    from itertools import islice
    def ok(n):
        an, y = n, 1
        while y < 10:
            an, y = an + 10*(an%10), 1
            while y < 10:
                if str(an+y)[0] == str(y):
                    an += y
                    break
                y += 1
            if y < 10:
                return False
        return True
    print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Nov 15 2023

Formula

The first eight terms are given by a(i) = 9*(i+1), for 1 <= i <= 8; thereafter, each successive block of eight terms is obtained by prefixing the terms of the previous block by 9. - Michael S. Branicky, Nov 15 2023 [This follows from the theorem above. - N. J. A. Sloane, Nov 19 2023]

Extensions

a(33) and beyond from Michael S. Branicky, Nov 15 2023