A367341 Numbers without comma-successors: these are the numbers k such that if the commas sequence A121805 is started at k instead of 1, there is no second term.
18, 27, 36, 45, 54, 63, 72, 81, 918, 927, 936, 945, 954, 963, 972, 981, 9918, 9927, 9936, 9945, 9954, 9963, 9972, 9981, 99918, 99927, 99936, 99945, 99954, 99963, 99972, 99981, 999918, 999927, 999936, 999945, 999954, 999963, 999972, 999981, 9999918, 9999927, 9999936, 9999945, 9999954, 9999963, 9999972, 9999981
Offset: 1
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..408
- Eric Angelini, The Commas Sequence, Message to Sequence Fans, Sep 06 2016. [Cached copy, with permission]
- Eric Angelini, Michael S. Branicky, Giovanni Resta, N. J. A. Sloane, and David W. Wilson, The Comma Sequence: A Simple Sequence With Bizarre Properties, arXiv:2401.14346, Fibonacci Quarterly 62:3 (2024), 215-232.
- Eric Angelini, Michael S. Branicky, Giovanni Resta, N. J. A. Sloane, and David W. Wilson, The Comma Sequence: A Simple Sequence With Bizarre Properties, Local copy.
- N. J. A. Sloane, Eric Angelini's Comma Sequence, Experimental Math Seminar, Rutgers Univ., January 18, 2024, Youtube video; Slides
Programs
-
Maple
for i from 0 to 4 do t1:=100*(10^i-1); for x from 1 to 8 do lprint(t1+9*x+9); od: od:
-
Mathematica
fQ[n_]:=Module[{k=n+10*Last[IntegerDigits[n]]+Range[9]}, Select[k,#-n==FromDigits[{Last[IntegerDigits[n]],First[IntegerDigits[#]]}]&]] =={}; Select[Range[10^5],fQ[#]&] (* Ivan N. Ianakiev, Nov 16 2023 *)
-
Python
from itertools import islice def ok(n): an, y = n, 1 while y < 10: an, y = an + 10*(an%10), 1 while y < 10: if str(an+y)[0] == str(y): an += y break y += 1 if y < 10: return False return True print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Nov 15 2023
Formula
The first eight terms are given by a(i) = 9*(i+1), for 1 <= i <= 8; thereafter, each successive block of eight terms is obtained by prefixing the terms of the previous block by 9. - Michael S. Branicky, Nov 15 2023 [This follows from the theorem above. - N. J. A. Sloane, Nov 19 2023]
Extensions
a(33) and beyond from Michael S. Branicky, Nov 15 2023
Comments